shaka-packager/packager/media/base/aes_cryptor.cc

191 lines
6.0 KiB
C++
Raw Permalink Normal View History

// Copyright 2016 Google LLC. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
#include <packager/media/base/aes_cryptor.h>
#include <string>
#include <vector>
#include <absl/log/check.h>
#include <absl/log/log.h>
#include <mbedtls/entropy.h>
#include <packager/macros/compiler.h>
#include <packager/macros/crypto.h>
namespace {
// According to ISO/IEC 23001-7:2016 CENC spec, IV should be either
// 64-bit (8-byte) or 128-bit (16-byte).
bool IsIvSizeValid(size_t iv_size) {
return iv_size == 8 || iv_size == 16;
}
} // namespace
namespace shaka {
namespace media {
AesCryptor::AesCryptor(ConstantIvFlag constant_iv_flag)
: constant_iv_flag_(constant_iv_flag), num_crypt_bytes_(0) {
mbedtls_cipher_init(&cipher_ctx_);
}
AesCryptor::~AesCryptor() {
mbedtls_cipher_free(&cipher_ctx_);
}
bool AesCryptor::Crypt(const std::vector<uint8_t>& text,
std::vector<uint8_t>* crypt_text) {
// Save text size to make it work for in-place conversion, since the
// next statement will update the text size.
const size_t text_size = text.size();
// mbedtls requires an extra block's worth of output buffer available.
crypt_text->resize(text_size + NumPaddingBytes(text_size) + AES_BLOCK_SIZE);
size_t crypt_text_size = crypt_text->size();
if (!Crypt(text.data(), text_size, crypt_text->data(), &crypt_text_size)) {
return false;
}
DCHECK_LE(crypt_text_size, crypt_text->size());
crypt_text->resize(crypt_text_size);
return true;
}
bool AesCryptor::Crypt(const std::string& text, std::string* crypt_text) {
// Save text size to make it work for in-place conversion, since the
// next statement will update the text size.
const size_t text_size = text.size();
// mbedtls requires an extra block's worth of output buffer available.
crypt_text->resize(text_size + NumPaddingBytes(text_size) + AES_BLOCK_SIZE);
size_t crypt_text_size = crypt_text->size();
if (!Crypt(reinterpret_cast<const uint8_t*>(text.data()), text_size,
reinterpret_cast<uint8_t*>(&(*crypt_text)[0]), &crypt_text_size))
return false;
DCHECK_LE(crypt_text_size, crypt_text->size());
crypt_text->resize(crypt_text_size);
return true;
}
bool AesCryptor::SetIv(const std::vector<uint8_t>& iv) {
if (!IsIvSizeValid(iv.size())) {
LOG(ERROR) << "Invalid IV size: " << iv.size();
return false;
}
iv_ = iv;
num_crypt_bytes_ = 0;
SetIvInternal();
return true;
}
void AesCryptor::UpdateIv() {
if (constant_iv_flag_ == kUseConstantIv)
return;
uint64_t increment = 0;
// As recommended in ISO/IEC 23001-7:2016 CENC spec, for 64-bit (8-byte)
// IV_Sizes, initialization vectors for subsequent samples can be created by
// incrementing the initialization vector of the previous sample.
// For 128-bit (16-byte) IV_Sizes, initialization vectors for subsequent
// samples should be created by adding the block count of the previous sample
// to the initialization vector of the previous sample.
// There is no official recommendation of how IV for next sample should be
// generated for CBC mode. We use the same generation algorithm as CTR here.
if (iv_.size() == 8) {
increment = 1;
} else {
DCHECK_EQ(16u, iv_.size());
increment = (num_crypt_bytes_ + AES_BLOCK_SIZE - 1) / AES_BLOCK_SIZE;
}
for (int64_t i = iv_.size() - 1; increment > 0 && i >= 0; --i) {
increment += iv_[i];
iv_[i] = increment & 0xFF;
increment >>= 8;
}
num_crypt_bytes_ = 0;
SetIvInternal();
}
bool AesCryptor::GenerateRandomIv(FourCC protection_scheme,
std::vector<uint8_t>* iv) {
// ISO/IEC 23001-7:2016 10.1 and 10.3 For 'cenc' and 'cens'
// default_Per_Sample_IV_Size and Per_Sample_IV_Size SHOULD be 8-bytes.
// There is no official guideline on the iv size for 'cbc1' and 'cbcs',
// but 16-byte provides better security.
const size_t iv_size =
(protection_scheme == FOURCC_cenc || protection_scheme == FOURCC_cens)
? 8
: 16;
iv->resize(iv_size);
mbedtls_entropy_context entropy_ctx;
mbedtls_entropy_init(&entropy_ctx);
int rv = mbedtls_entropy_func(&entropy_ctx, iv->data(), iv_size);
mbedtls_entropy_free(&entropy_ctx);
if (rv != 0) {
LOG(ERROR) << "mbedtls_entropy_func failed with: " << rv;
return false;
}
return true;
}
size_t AesCryptor::NumPaddingBytes(size_t size) const {
// No padding by default.
UNUSED(size);
return 0;
}
bool AesCryptor::SetupCipher(size_t key_size, CipherMode mode) {
mbedtls_cipher_type_t type;
// AES defines three key sizes: 128, 192 and 256 bits.
// NOTE: Because we use ECB mode in the CTR cryptors, this returns ECB
// instead of CTR. Counters and block offsets are managed internally.
switch (key_size) {
case 16:
type = mode == kCtrMode ? MBEDTLS_CIPHER_AES_128_ECB
: MBEDTLS_CIPHER_AES_128_CBC;
break;
case 24:
type = mode == kCtrMode ? MBEDTLS_CIPHER_AES_192_ECB
: MBEDTLS_CIPHER_AES_192_CBC;
break;
case 32:
type = mode == kCtrMode ? MBEDTLS_CIPHER_AES_256_ECB
: MBEDTLS_CIPHER_AES_256_CBC;
break;
default:
LOG(ERROR) << "Invalid AES key size: " << key_size;
return false;
}
const mbedtls_cipher_info_t* cipher_info =
mbedtls_cipher_info_from_type(type);
CHECK(cipher_info);
if (mbedtls_cipher_setup(&cipher_ctx_, cipher_info) != 0) {
LOG(ERROR) << "Cipher setup failed";
return false;
}
// Padding mode only applies to CBC.
if (mode == kCbcMode) {
// We handle padding ourselves. Don't let mbedtls mess with it.
mbedtls_cipher_padding_t cipher_padding = MBEDTLS_PADDING_NONE;
if (mbedtls_cipher_set_padding_mode(&cipher_ctx_, cipher_padding) != 0) {
LOG(ERROR) << "Failed to set CBC padding mode";
return false;
}
}
return true;
}
} // namespace media
} // namespace shaka