shaka-packager/base/third_party/symbolize/symbolize.cc

684 lines
22 KiB
C++
Raw Normal View History

// Copyright (c) 2006, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: Satoru Takabayashi
// Stack-footprint reduction work done by Raksit Ashok
//
// Implementation note:
//
// We don't use heaps but only use stacks. We want to reduce the
// stack consumption so that the symbolizer can run on small stacks.
//
// Here are some numbers collected with GCC 4.1.0 on x86:
// - sizeof(Elf32_Sym) = 16
// - sizeof(Elf32_Shdr) = 40
// - sizeof(Elf64_Sym) = 24
// - sizeof(Elf64_Shdr) = 64
//
// This implementation is intended to be async-signal-safe but uses
// some functions which are not guaranteed to be so, such as memchr()
// and memmove(). We assume they are async-signal-safe.
//
#include "build/build_config.h"
#include "utilities.h"
#if defined(HAVE_SYMBOLIZE)
#include <limits>
#include "symbolize.h"
#include "demangle.h"
_START_GOOGLE_NAMESPACE_
// We don't use assert() since it's not guaranteed to be
// async-signal-safe. Instead we define a minimal assertion
// macro. So far, we don't need pretty printing for __FILE__, etc.
// A wrapper for abort() to make it callable in ? :.
static int AssertFail() {
abort();
return 0; // Should not reach.
}
#define SAFE_ASSERT(expr) ((expr) ? 0 : AssertFail())
static SymbolizeCallback g_symbolize_callback = NULL;
void InstallSymbolizeCallback(SymbolizeCallback callback) {
g_symbolize_callback = callback;
}
// This function wraps the Demangle function to provide an interface
// where the input symbol is demangled in-place.
// To keep stack consumption low, we would like this function to not
// get inlined.
static ATTRIBUTE_NOINLINE void DemangleInplace(char *out, int out_size) {
char demangled[256]; // Big enough for sane demangled symbols.
if (Demangle(out, demangled, sizeof(demangled))) {
// Demangling succeeded. Copy to out if the space allows.
int len = strlen(demangled);
if (len + 1 <= out_size) { // +1 for '\0'.
SAFE_ASSERT(len < sizeof(demangled));
memmove(out, demangled, len + 1);
}
}
}
_END_GOOGLE_NAMESPACE_
#if defined(__ELF__)
#include <dlfcn.h>
#if defined(OS_OPENBSD)
#include <sys/exec_elf.h>
#else
#include <elf.h>
#endif
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include "symbolize.h"
#include "config.h"
#include "glog/raw_logging.h"
// Re-runs fn until it doesn't cause EINTR.
#define NO_INTR(fn) do {} while ((fn) < 0 && errno == EINTR)
_START_GOOGLE_NAMESPACE_
// Read up to "count" bytes from file descriptor "fd" into the buffer
// starting at "buf" while handling short reads and EINTR. On
// success, return the number of bytes read. Otherwise, return -1.
static ssize_t ReadPersistent(const int fd, void *buf, const size_t count) {
SAFE_ASSERT(fd >= 0);
SAFE_ASSERT(count <= std::numeric_limits<ssize_t>::max());
char *buf0 = reinterpret_cast<char *>(buf);
ssize_t num_bytes = 0;
while (num_bytes < count) {
ssize_t len;
NO_INTR(len = read(fd, buf0 + num_bytes, count - num_bytes));
if (len < 0) { // There was an error other than EINTR.
return -1;
}
if (len == 0) { // Reached EOF.
break;
}
num_bytes += len;
}
SAFE_ASSERT(num_bytes <= count);
return num_bytes;
}
// Read up to "count" bytes from "offset" in the file pointed by file
// descriptor "fd" into the buffer starting at "buf". On success,
// return the number of bytes read. Otherwise, return -1.
static ssize_t ReadFromOffset(const int fd, void *buf,
const size_t count, const off_t offset) {
off_t off = lseek(fd, offset, SEEK_SET);
if (off == (off_t)-1) {
return -1;
}
return ReadPersistent(fd, buf, count);
}
// Try reading exactly "count" bytes from "offset" bytes in a file
// pointed by "fd" into the buffer starting at "buf" while handling
// short reads and EINTR. On success, return true. Otherwise, return
// false.
static bool ReadFromOffsetExact(const int fd, void *buf,
const size_t count, const off_t offset) {
ssize_t len = ReadFromOffset(fd, buf, count, offset);
return len == count;
}
// Returns elf_header.e_type if the file pointed by fd is an ELF binary.
static int FileGetElfType(const int fd) {
ElfW(Ehdr) elf_header;
if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) {
return -1;
}
if (memcmp(elf_header.e_ident, ELFMAG, SELFMAG) != 0) {
return -1;
}
return elf_header.e_type;
}
// Read the section headers in the given ELF binary, and if a section
// of the specified type is found, set the output to this section header
// and return true. Otherwise, return false.
// To keep stack consumption low, we would like this function to not get
// inlined.
static ATTRIBUTE_NOINLINE bool
GetSectionHeaderByType(const int fd, ElfW(Half) sh_num, const off_t sh_offset,
ElfW(Word) type, ElfW(Shdr) *out) {
// Read at most 16 section headers at a time to save read calls.
ElfW(Shdr) buf[16];
for (int i = 0; i < sh_num;) {
const ssize_t num_bytes_left = (sh_num - i) * sizeof(buf[0]);
const ssize_t num_bytes_to_read =
(sizeof(buf) > num_bytes_left) ? num_bytes_left : sizeof(buf);
const ssize_t len = ReadFromOffset(fd, buf, num_bytes_to_read,
sh_offset + i * sizeof(buf[0]));
SAFE_ASSERT(len % sizeof(buf[0]) == 0);
const ssize_t num_headers_in_buf = len / sizeof(buf[0]);
SAFE_ASSERT(num_headers_in_buf <= sizeof(buf) / sizeof(buf[0]));
for (int j = 0; j < num_headers_in_buf; ++j) {
if (buf[j].sh_type == type) {
*out = buf[j];
return true;
}
}
i += num_headers_in_buf;
}
return false;
}
// There is no particular reason to limit section name to 63 characters,
// but there has (as yet) been no need for anything longer either.
const int kMaxSectionNameLen = 64;
// name_len should include terminating '\0'.
bool GetSectionHeaderByName(int fd, const char *name, size_t name_len,
ElfW(Shdr) *out) {
ElfW(Ehdr) elf_header;
if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) {
return false;
}
ElfW(Shdr) shstrtab;
off_t shstrtab_offset = (elf_header.e_shoff +
elf_header.e_shentsize * elf_header.e_shstrndx);
if (!ReadFromOffsetExact(fd, &shstrtab, sizeof(shstrtab), shstrtab_offset)) {
return false;
}
for (int i = 0; i < elf_header.e_shnum; ++i) {
off_t section_header_offset = (elf_header.e_shoff +
elf_header.e_shentsize * i);
if (!ReadFromOffsetExact(fd, out, sizeof(*out), section_header_offset)) {
return false;
}
char header_name[kMaxSectionNameLen];
if (sizeof(header_name) < name_len) {
RAW_LOG(WARNING, "Section name '%s' is too long (%" PRIuS "); "
"section will not be found (even if present).", name, name_len);
// No point in even trying.
return false;
}
off_t name_offset = shstrtab.sh_offset + out->sh_name;
ssize_t n_read = ReadFromOffset(fd, &header_name, name_len, name_offset);
if (n_read == -1) {
return false;
} else if (n_read != name_len) {
// Short read -- name could be at end of file.
continue;
}
if (memcmp(header_name, name, name_len) == 0) {
return true;
}
}
return false;
}
// Read a symbol table and look for the symbol containing the
// pc. Iterate over symbols in a symbol table and look for the symbol
// containing "pc". On success, return true and write the symbol name
// to out. Otherwise, return false.
// To keep stack consumption low, we would like this function to not get
// inlined.
static ATTRIBUTE_NOINLINE bool
FindSymbol(uint64_t pc, const int fd, char *out, int out_size,
uint64_t symbol_offset, const ElfW(Shdr) *strtab,
const ElfW(Shdr) *symtab) {
if (symtab == NULL) {
return false;
}
const int num_symbols = symtab->sh_size / symtab->sh_entsize;
for (int i = 0; i < num_symbols;) {
off_t offset = symtab->sh_offset + i * symtab->sh_entsize;
// If we are reading Elf64_Sym's, we want to limit this array to
// 32 elements (to keep stack consumption low), otherwise we can
// have a 64 element Elf32_Sym array.
#if __WORDSIZE == 64
#define NUM_SYMBOLS 32
#else
#define NUM_SYMBOLS 64
#endif
// Read at most NUM_SYMBOLS symbols at once to save read() calls.
ElfW(Sym) buf[NUM_SYMBOLS];
const ssize_t len = ReadFromOffset(fd, &buf, sizeof(buf), offset);
SAFE_ASSERT(len % sizeof(buf[0]) == 0);
const ssize_t num_symbols_in_buf = len / sizeof(buf[0]);
SAFE_ASSERT(num_symbols_in_buf <= sizeof(buf)/sizeof(buf[0]));
for (int j = 0; j < num_symbols_in_buf; ++j) {
const ElfW(Sym)& symbol = buf[j];
uint64_t start_address = symbol.st_value;
start_address += symbol_offset;
uint64_t end_address = start_address + symbol.st_size;
if (symbol.st_value != 0 && // Skip null value symbols.
symbol.st_shndx != 0 && // Skip undefined symbols.
start_address <= pc && pc < end_address) {
ssize_t len1 = ReadFromOffset(fd, out, out_size,
strtab->sh_offset + symbol.st_name);
if (len1 <= 0 || memchr(out, '\0', out_size) == NULL) {
return false;
}
return true; // Obtained the symbol name.
}
}
i += num_symbols_in_buf;
}
return false;
}
// Get the symbol name of "pc" from the file pointed by "fd". Process
// both regular and dynamic symbol tables if necessary. On success,
// write the symbol name to "out" and return true. Otherwise, return
// false.
static bool GetSymbolFromObjectFile(const int fd, uint64_t pc,
char *out, int out_size,
uint64_t map_start_address) {
// Read the ELF header.
ElfW(Ehdr) elf_header;
if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) {
return false;
}
uint64_t symbol_offset = 0;
if (elf_header.e_type == ET_DYN) { // DSO needs offset adjustment.
symbol_offset = map_start_address;
}
ElfW(Shdr) symtab, strtab;
// Consult a regular symbol table first.
if (GetSectionHeaderByType(fd, elf_header.e_shnum, elf_header.e_shoff,
SHT_SYMTAB, &symtab)) {
if (!ReadFromOffsetExact(fd, &strtab, sizeof(strtab), elf_header.e_shoff +
symtab.sh_link * sizeof(symtab))) {
return false;
}
if (FindSymbol(pc, fd, out, out_size, symbol_offset,
&strtab, &symtab)) {
return true; // Found the symbol in a regular symbol table.
}
}
// If the symbol is not found, then consult a dynamic symbol table.
if (GetSectionHeaderByType(fd, elf_header.e_shnum, elf_header.e_shoff,
SHT_DYNSYM, &symtab)) {
if (!ReadFromOffsetExact(fd, &strtab, sizeof(strtab), elf_header.e_shoff +
symtab.sh_link * sizeof(symtab))) {
return false;
}
if (FindSymbol(pc, fd, out, out_size, symbol_offset,
&strtab, &symtab)) {
return true; // Found the symbol in a dynamic symbol table.
}
}
return false;
}
namespace {
// Thin wrapper around a file descriptor so that the file descriptor
// gets closed for sure.
struct FileDescriptor {
const int fd_;
explicit FileDescriptor(int fd) : fd_(fd) {}
~FileDescriptor() {
if (fd_ >= 0) {
NO_INTR(close(fd_));
}
}
int get() { return fd_; }
private:
explicit FileDescriptor(const FileDescriptor&);
void operator=(const FileDescriptor&);
};
// Helper class for reading lines from file.
//
// Note: we don't use ProcMapsIterator since the object is big (it has
// a 5k array member) and uses async-unsafe functions such as sscanf()
// and snprintf().
class LineReader {
public:
explicit LineReader(int fd, char *buf, int buf_len) : fd_(fd),
buf_(buf), buf_len_(buf_len), bol_(buf), eol_(buf), eod_(buf) {
}
// Read '\n'-terminated line from file. On success, modify "bol"
// and "eol", then return true. Otherwise, return false.
//
// Note: if the last line doesn't end with '\n', the line will be
// dropped. It's an intentional behavior to make the code simple.
bool ReadLine(const char **bol, const char **eol) {
if (BufferIsEmpty()) { // First time.
const ssize_t num_bytes = ReadPersistent(fd_, buf_, buf_len_);
if (num_bytes <= 0) { // EOF or error.
return false;
}
eod_ = buf_ + num_bytes;
bol_ = buf_;
} else {
bol_ = eol_ + 1; // Advance to the next line in the buffer.
SAFE_ASSERT(bol_ <= eod_); // "bol_" can point to "eod_".
if (!HasCompleteLine()) {
const int incomplete_line_length = eod_ - bol_;
// Move the trailing incomplete line to the beginning.
memmove(buf_, bol_, incomplete_line_length);
// Read text from file and append it.
char * const append_pos = buf_ + incomplete_line_length;
const int capacity_left = buf_len_ - incomplete_line_length;
const ssize_t num_bytes = ReadPersistent(fd_, append_pos,
capacity_left);
if (num_bytes <= 0) { // EOF or error.
return false;
}
eod_ = append_pos + num_bytes;
bol_ = buf_;
}
}
eol_ = FindLineFeed();
if (eol_ == NULL) { // '\n' not found. Malformed line.
return false;
}
*eol_ = '\0'; // Replace '\n' with '\0'.
*bol = bol_;
*eol = eol_;
return true;
}
// Beginning of line.
const char *bol() {
return bol_;
}
// End of line.
const char *eol() {
return eol_;
}
private:
explicit LineReader(const LineReader&);
void operator=(const LineReader&);
char *FindLineFeed() {
return reinterpret_cast<char *>(memchr(bol_, '\n', eod_ - bol_));
}
bool BufferIsEmpty() {
return buf_ == eod_;
}
bool HasCompleteLine() {
return !BufferIsEmpty() && FindLineFeed() != NULL;
}
const int fd_;
char * const buf_;
const int buf_len_;
char *bol_;
char *eol_;
const char *eod_; // End of data in "buf_".
};
} // namespace
// Place the hex number read from "start" into "*hex". The pointer to
// the first non-hex character or "end" is returned.
static char *GetHex(const char *start, const char *end, uint64_t *hex) {
*hex = 0;
const char *p;
for (p = start; p < end; ++p) {
int ch = *p;
if ((ch >= '0' && ch <= '9') ||
(ch >= 'A' && ch <= 'F') || (ch >= 'a' && ch <= 'f')) {
*hex = (*hex << 4) | (ch < 'A' ? ch - '0' : (ch & 0xF) + 9);
} else { // Encountered the first non-hex character.
break;
}
}
SAFE_ASSERT(p <= end);
return const_cast<char *>(p);
}
// Search for the object file (from /proc/self/maps) that contains
// the specified pc. If found, open this file and return the file handle,
// and also set start_address to the start address of where this object
// file is mapped to in memory. Otherwise, return -1.
static ATTRIBUTE_NOINLINE int
OpenObjectFileContainingPcAndGetStartAddress(uint64_t pc,
uint64_t &start_address) {
int object_fd;
// Open /proc/self/maps.
int maps_fd;
NO_INTR(maps_fd = open("/proc/self/maps", O_RDONLY));
FileDescriptor wrapped_maps_fd(maps_fd);
if (wrapped_maps_fd.get() < 0) {
return -1;
}
// Iterate over maps and look for the map containing the pc. Then
// look into the symbol tables inside.
char buf[1024]; // Big enough for line of sane /proc/self/maps
LineReader reader(wrapped_maps_fd.get(), buf, sizeof(buf));
while (true) {
const char *cursor;
const char *eol;
if (!reader.ReadLine(&cursor, &eol)) { // EOF or malformed line.
return -1;
}
// Start parsing line in /proc/self/maps. Here is an example:
//
// 08048000-0804c000 r-xp 00000000 08:01 2142121 /bin/cat
//
// We want start address (08048000), end address (0804c000), flags
// (r-xp) and file name (/bin/cat).
// Read start address.
cursor = GetHex(cursor, eol, &start_address);
if (cursor == eol || *cursor != '-') {
return -1; // Malformed line.
}
++cursor; // Skip '-'.
// Read end address.
uint64_t end_address;
cursor = GetHex(cursor, eol, &end_address);
if (cursor == eol || *cursor != ' ') {
return -1; // Malformed line.
}
++cursor; // Skip ' '.
// Check start and end addresses.
if (!(start_address <= pc && pc < end_address)) {
continue; // We skip this map. PC isn't in this map.
}
// Read flags. Skip flags until we encounter a space or eol.
const char * const flags_start = cursor;
while (cursor < eol && *cursor != ' ') {
++cursor;
}
// We expect at least four letters for flags (ex. "r-xp").
if (cursor == eol || cursor < flags_start + 4) {
return -1; // Malformed line.
}
// Check flags. We are only interested in "r-x" maps.
if (memcmp(flags_start, "r-x", 3) != 0) { // Not a "r-x" map.
continue; // We skip this map.
}
++cursor; // Skip ' '.
// Skip to file name. "cursor" now points to file offset. We need to
// skip at least three spaces for file offset, dev, and inode.
int num_spaces = 0;
while (cursor < eol) {
if (*cursor == ' ') {
++num_spaces;
} else if (num_spaces >= 3) {
// The first non-space character after skipping three spaces
// is the beginning of the file name.
break;
}
++cursor;
}
if (cursor == eol) {
return -1; // Malformed line.
}
// Finally, "cursor" now points to file name of our interest.
NO_INTR(object_fd = open(cursor, O_RDONLY));
if (object_fd < 0) {
return -1;
}
return object_fd;
}
}
// The implementation of our symbolization routine. If it
// successfully finds the symbol containing "pc" and obtains the
// symbol name, returns true and write the symbol name to "out".
// Otherwise, returns false. If Callback function is installed via
// InstallSymbolizeCallback(), the function is also called in this function,
// and "out" is used as its output.
// To keep stack consumption low, we would like this function to not
// get inlined.
static ATTRIBUTE_NOINLINE bool SymbolizeAndDemangle(void *pc, char *out,
int out_size) {
uint64_t pc0 = reinterpret_cast<uintptr_t>(pc);
uint64_t start_address = 0;
int object_fd = OpenObjectFileContainingPcAndGetStartAddress(pc0,
start_address);
if (object_fd == -1) {
return false;
}
FileDescriptor wrapped_object_fd(object_fd);
int elf_type = FileGetElfType(wrapped_object_fd.get());
if (elf_type == -1) {
return false;
}
if (g_symbolize_callback) {
// Run the call back if it's installed.
// Note: relocation (and much of the rest of this code) will be
// wrong for prelinked shared libraries and PIE executables.
uint64 relocation = (elf_type == ET_DYN) ? start_address : 0;
int num_bytes_written = g_symbolize_callback(wrapped_object_fd.get(),
pc, out, out_size,
relocation);
if (num_bytes_written > 0) {
out += num_bytes_written;
out_size -= num_bytes_written;
}
}
if (!GetSymbolFromObjectFile(wrapped_object_fd.get(), pc0,
out, out_size, start_address)) {
return false;
}
// Symbolization succeeded. Now we try to demangle the symbol.
DemangleInplace(out, out_size);
return true;
}
_END_GOOGLE_NAMESPACE_
#elif defined(OS_MACOSX) && defined(HAVE_DLADDR)
#include <dlfcn.h>
#include <string.h>
_START_GOOGLE_NAMESPACE_
static ATTRIBUTE_NOINLINE bool SymbolizeAndDemangle(void *pc, char *out,
int out_size) {
Dl_info info;
if (dladdr(pc, &info)) {
if (strlen(info.dli_sname) < out_size) {
strcpy(out, info.dli_sname);
// Symbolization succeeded. Now we try to demangle the symbol.
DemangleInplace(out, out_size);
return true;
}
}
return false;
}
_END_GOOGLE_NAMESPACE_
#else
# error BUG: HAVE_SYMBOLIZE was wrongly set
#endif
_START_GOOGLE_NAMESPACE_
bool Symbolize(void *pc, char *out, int out_size) {
SAFE_ASSERT(out_size >= 0);
return SymbolizeAndDemangle(pc, out, out_size);
}
_END_GOOGLE_NAMESPACE_
#else /* HAVE_SYMBOLIZE */
#include <assert.h>
#include "config.h"
_START_GOOGLE_NAMESPACE_
// TODO: Support other environments.
bool Symbolize(void *pc, char *out, int out_size) {
assert(0);
return false;
}
_END_GOOGLE_NAMESPACE_
#endif