shaka-packager/packager/media/formats/webm/encryptor.cc

214 lines
7.9 KiB
C++
Raw Normal View History

// Copyright 2015 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
#include "packager/media/formats/webm/encryptor.h"
#include <gflags/gflags.h>
#include "packager/media/base/aes_encryptor.h"
#include "packager/media/base/buffer_writer.h"
#include "packager/media/base/fourccs.h"
#include "packager/media/base/media_sample.h"
#include "packager/media/codecs/vp9_parser.h"
#include "packager/media/formats/webm/webm_constants.h"
namespace shaka {
namespace media {
namespace webm {
namespace {
const size_t kAesBlockSize = 16;
Status CreateContentEncryption(mkvmuxer::Track* track, EncryptionKey* key) {
if (!track->AddContentEncoding()) {
return Status(error::INTERNAL_ERROR,
"Could not add ContentEncoding to track.");
}
mkvmuxer::ContentEncoding* const encoding =
track->GetContentEncodingByIndex(0);
if (!encoding) {
return Status(error::INTERNAL_ERROR,
"Could not add ContentEncoding to track.");
}
mkvmuxer::ContentEncAESSettings* const aes = encoding->enc_aes_settings();
if (!aes) {
return Status(error::INTERNAL_ERROR,
"Error getting ContentEncAESSettings.");
}
if (aes->cipher_mode() != mkvmuxer::ContentEncAESSettings::kCTR) {
return Status(error::INTERNAL_ERROR, "Cipher Mode is not CTR.");
}
if (!key->key_id.empty() &&
!encoding->SetEncryptionID(
reinterpret_cast<const uint8_t*>(key->key_id.data()),
key->key_id.size())) {
return Status(error::INTERNAL_ERROR, "Error setting encryption ID.");
}
return Status::OK;
}
} // namespace
Encryptor::Encryptor() {}
Encryptor::~Encryptor() {}
Status Encryptor::Initialize(MuxerListener* muxer_listener,
KeySource::TrackType track_type,
Codec codec,
KeySource* key_source,
bool webm_subsample_encryption) {
DCHECK(key_source);
return CreateEncryptor(muxer_listener, track_type, codec, key_source,
webm_subsample_encryption);
}
Status Encryptor::AddTrackInfo(mkvmuxer::Track* track) {
DCHECK(key_);
return CreateContentEncryption(track, key_.get());
}
Status Encryptor::EncryptFrame(scoped_refptr<MediaSample> sample,
bool encrypt_frame) {
DCHECK(encryptor_);
const size_t sample_size = sample->data_size();
// We need to parse the frame (which also updates the vpx parser) even if the
// frame is not encrypted as the next (encrypted) frame may be dependent on
// this clear frame.
std::vector<VPxFrameInfo> vpx_frames;
if (vpx_parser_) {
if (!vpx_parser_->Parse(sample->data(), sample_size, &vpx_frames)) {
return Status(error::MUXER_FAILURE, "Failed to parse VPx frame.");
}
}
if (encrypt_frame) {
const size_t iv_size = encryptor_->iv().size();
if (iv_size != kWebMIvSize) {
return Status(error::MUXER_FAILURE,
"Incorrect size WebM encryption IV.");
}
if (vpx_frames.size()) {
// Use partitioned subsample encryption: | signal_byte(3) | iv
// | num_partitions | partition_offset * n | enc_data |
if (vpx_frames.size() > kWebMMaxSubsamples) {
return Status(error::MUXER_FAILURE,
"Maximum number of VPx encryption partitions exceeded.");
}
size_t num_partitions =
vpx_frames.size() == 1 ? 1 : vpx_frames.size() * 2;
size_t header_size = kWebMSignalByteSize + iv_size +
kWebMNumPartitionsSize +
(kWebMPartitionOffsetSize * num_partitions);
sample->resize_data(header_size + sample_size);
uint8_t* sample_data = sample->writable_data();
memmove(sample_data + header_size, sample_data, sample_size);
sample_data[0] = kWebMEncryptedSignal | kWebMPartitionedSignal;
memcpy(sample_data + kWebMSignalByteSize, encryptor_->iv().data(),
iv_size);
sample_data[kWebMSignalByteSize + kWebMIvSize] =
static_cast<uint8_t>(num_partitions);
uint32_t partition_offset = 0;
BufferWriter offsets_buffer(kWebMPartitionOffsetSize * num_partitions);
for (const auto& vpx_frame : vpx_frames) {
uint32_t encrypted_size = static_cast<uint32_t>(
vpx_frame.frame_size - vpx_frame.uncompressed_header_size);
encrypted_size -= encrypted_size % kAesBlockSize;
uint32_t clear_size =
static_cast<uint32_t>(vpx_frame.frame_size - encrypted_size);
partition_offset += clear_size;
offsets_buffer.AppendInt(partition_offset);
if (encrypted_size > 0) {
uint8_t* encrypted_ptr = sample_data + header_size + partition_offset;
if (!encryptor_->Crypt(encrypted_ptr, encrypted_size, encrypted_ptr)) {
return Status(error::MUXER_FAILURE, "Failed to encrypt the frame.");
}
partition_offset += encrypted_size;
}
if (num_partitions > 1) {
offsets_buffer.AppendInt(partition_offset);
}
}
DCHECK_EQ(num_partitions * kWebMPartitionOffsetSize,
offsets_buffer.Size());
memcpy(sample_data + kWebMSignalByteSize + kWebMIvSize +
kWebMNumPartitionsSize,
offsets_buffer.Buffer(), offsets_buffer.Size());
} else {
// Use whole-frame encryption: | signal_byte(1) | iv | enc_data |
sample->resize_data(sample_size + iv_size + kWebMSignalByteSize);
uint8_t* sample_data = sample->writable_data();
// Encrypt the data in-place.
if (!encryptor_->Crypt(sample_data, sample_size, sample_data)) {
return Status(error::MUXER_FAILURE, "Failed to encrypt the frame.");
}
// First move the sample data to after the IV; then write the IV and
// signal byte.
memmove(sample_data + iv_size + kWebMSignalByteSize, sample_data,
sample_size);
sample_data[0] = kWebMEncryptedSignal;
memcpy(sample_data + 1, encryptor_->iv().data(), iv_size);
}
encryptor_->UpdateIv();
} else {
// Clear sample: | signal_byte(0) | data |
sample->resize_data(sample_size + 1);
uint8_t* sample_data = sample->writable_data();
memmove(sample_data + 1, sample_data, sample_size);
sample_data[0] = 0x00;
}
return Status::OK;
}
Status Encryptor::CreateEncryptor(MuxerListener* muxer_listener,
KeySource::TrackType track_type,
Codec codec,
KeySource* key_source,
bool webm_subsample_encryption) {
std::unique_ptr<EncryptionKey> encryption_key(new EncryptionKey());
Status status = key_source->GetKey(track_type, encryption_key.get());
if (!status.ok())
return status;
if (encryption_key->iv.empty()) {
if (!AesCryptor::GenerateRandomIv(FOURCC_cenc, &encryption_key->iv))
return Status(error::INTERNAL_ERROR, "Failed to generate random iv.");
}
DCHECK_EQ(kWebMIvSize, encryption_key->iv.size());
std::unique_ptr<AesCtrEncryptor> encryptor(new AesCtrEncryptor());
const bool initialized =
encryptor->InitializeWithIv(encryption_key->key, encryption_key->iv);
if (!initialized)
return Status(error::INTERNAL_ERROR, "Failed to create the encryptor.");
if (webm_subsample_encryption && codec == kCodecVP9) {
// Allocate VP9 parser to do subsample encryption of VP9.
vpx_parser_.reset(new VP9Parser);
}
if (muxer_listener) {
const bool kInitialEncryptionInfo = true;
muxer_listener->OnEncryptionInfoReady(
kInitialEncryptionInfo, FOURCC_cenc, encryption_key->key_id,
encryptor->iv(), encryption_key->key_system_info);
}
key_ = std::move(encryption_key);
encryptor_ = std::move(encryptor);
return Status::OK;
}
} // namespace webm
} // namespace media
} // namespace shaka