2014-02-14 23:21:05 +00:00
|
|
|
// Copyright 2014 Google Inc. All rights reserved.
|
|
|
|
//
|
|
|
|
// Use of this source code is governed by a BSD-style
|
|
|
|
// license that can be found in the LICENSE file or at
|
|
|
|
// https://developers.google.com/open-source/licenses/bsd
|
2013-11-12 20:34:58 +00:00
|
|
|
|
|
|
|
#include "media/base/aes_encryptor.h"
|
|
|
|
|
|
|
|
#include <openssl/aes.h>
|
2014-05-08 00:34:11 +00:00
|
|
|
#include <openssl/err.h>
|
|
|
|
#include <openssl/rand.h>
|
2013-11-12 20:34:58 +00:00
|
|
|
|
|
|
|
#include "base/logging.h"
|
|
|
|
#include "base/rand_util.h"
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
// Increment an 8-byte counter by 1. Return true if overflowed.
|
|
|
|
bool Increment64(uint8* counter) {
|
|
|
|
DCHECK(counter);
|
|
|
|
for (int i = 7; i >= 0; --i)
|
|
|
|
if (++counter[i] != 0)
|
|
|
|
return false;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// According to ISO/IEC FDIS 23001-7: CENC spec, IV should be either
|
|
|
|
// 64-bit (8-byte) or 128-bit (16-byte).
|
|
|
|
bool IsIvSizeValid(size_t iv_size) { return iv_size == 8 || iv_size == 16; }
|
|
|
|
|
2013-12-17 00:49:56 +00:00
|
|
|
// AES defines three key sizes: 128, 192 and 256 bits.
|
|
|
|
bool IsKeySizeValidForAes(size_t key_size) {
|
|
|
|
return key_size == 16 || key_size == 24 || key_size == 32;
|
|
|
|
}
|
|
|
|
|
2013-11-12 20:34:58 +00:00
|
|
|
// CENC protection scheme uses 128-bit keys in counter mode.
|
|
|
|
const uint32 kCencKeySize = 16;
|
|
|
|
|
|
|
|
} // namespace
|
|
|
|
|
2014-09-19 20:41:13 +00:00
|
|
|
namespace edash_packager {
|
2013-11-12 20:34:58 +00:00
|
|
|
namespace media {
|
|
|
|
|
|
|
|
AesCtrEncryptor::AesCtrEncryptor()
|
|
|
|
: block_offset_(0),
|
|
|
|
encrypted_counter_(AES_BLOCK_SIZE, 0),
|
|
|
|
counter_overflow_(false) {
|
|
|
|
COMPILE_ASSERT(AES_BLOCK_SIZE == kCencKeySize,
|
|
|
|
cenc_key_size_should_be_the_same_as_aes_block_size);
|
|
|
|
}
|
|
|
|
|
|
|
|
AesCtrEncryptor::~AesCtrEncryptor() {}
|
|
|
|
|
|
|
|
bool AesCtrEncryptor::InitializeWithRandomIv(const std::vector<uint8>& key,
|
|
|
|
uint8 iv_size) {
|
|
|
|
std::vector<uint8> iv(iv_size, 0);
|
2014-05-08 00:34:11 +00:00
|
|
|
if (RAND_bytes(&iv[0], iv_size) != 1) {
|
|
|
|
LOG(ERROR) << "RAND_bytes failed with error: "
|
|
|
|
<< ERR_error_string(ERR_get_error(), NULL);
|
|
|
|
return false;
|
|
|
|
}
|
2013-11-12 20:34:58 +00:00
|
|
|
return InitializeWithIv(key, iv);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool AesCtrEncryptor::InitializeWithIv(const std::vector<uint8>& key,
|
|
|
|
const std::vector<uint8>& iv) {
|
2013-12-17 00:49:56 +00:00
|
|
|
if (key.size() != kCencKeySize) {
|
|
|
|
LOG(ERROR) << "Invalid key size of " << key.size() << " for CENC.";
|
2013-11-12 20:34:58 +00:00
|
|
|
return false;
|
|
|
|
}
|
2013-12-17 00:49:56 +00:00
|
|
|
if (!IsIvSizeValid(iv.size())) {
|
|
|
|
LOG(ERROR) << "Invalid IV size: " << iv.size();
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
aes_key_.reset(new AES_KEY());
|
|
|
|
CHECK_EQ(AES_set_encrypt_key(&key[0], AES_BLOCK_SIZE * 8, aes_key_.get()), 0);
|
|
|
|
return SetIv(iv);
|
2013-11-12 20:34:58 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
bool AesCtrEncryptor::Encrypt(const uint8* plaintext,
|
|
|
|
size_t plaintext_size,
|
|
|
|
uint8* ciphertext) {
|
2013-12-17 00:49:56 +00:00
|
|
|
DCHECK(plaintext);
|
|
|
|
DCHECK(ciphertext);
|
|
|
|
DCHECK(aes_key_);
|
2013-11-12 20:34:58 +00:00
|
|
|
|
|
|
|
for (size_t i = 0; i < plaintext_size; ++i) {
|
|
|
|
if (block_offset_ == 0) {
|
|
|
|
AES_encrypt(&counter_[0], &encrypted_counter_[0], aes_key_.get());
|
|
|
|
// As mentioned in ISO/IEC FDIS 23001-7: CENC spec, of the 16 byte counter
|
|
|
|
// block, bytes 8 to 15 (i.e. the least significant bytes) are used as a
|
|
|
|
// simple 64 bit unsigned integer that is incremented by one for each
|
|
|
|
// subsequent block of sample data processed and is kept in network byte
|
|
|
|
// order.
|
|
|
|
if (Increment64(&counter_[8]))
|
|
|
|
counter_overflow_ = true;
|
|
|
|
}
|
|
|
|
ciphertext[i] = plaintext[i] ^ encrypted_counter_[block_offset_];
|
|
|
|
block_offset_ = (block_offset_ + 1) % AES_BLOCK_SIZE;
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
void AesCtrEncryptor::UpdateIv() {
|
|
|
|
block_offset_ = 0;
|
|
|
|
|
|
|
|
// As recommended in ISO/IEC FDIS 23001-7: CENC spec, for 64-bit (8-byte)
|
|
|
|
// IV_Sizes, initialization vectors for subsequent samples can be created by
|
|
|
|
// incrementing the initialization vector of the previous sample.
|
|
|
|
// For 128-bit (16-byte) IV_Sizes, initialization vectors for subsequent
|
|
|
|
// samples should be created by adding the block count of the previous sample
|
|
|
|
// to the initialization vector of the previous sample.
|
|
|
|
if (iv_.size() == 8) {
|
|
|
|
Increment64(&iv_[0]);
|
|
|
|
counter_ = iv_;
|
|
|
|
counter_.resize(AES_BLOCK_SIZE, 0);
|
|
|
|
} else {
|
2014-03-21 17:26:49 +00:00
|
|
|
DCHECK_EQ(16u, iv_.size());
|
2013-11-12 20:34:58 +00:00
|
|
|
// Even though the block counter portion of the counter (bytes 8 to 15) is
|
|
|
|
// treated as a 64-bit number, it is recommended that the initialization
|
|
|
|
// vector is treated as a 128-bit number when calculating the next
|
|
|
|
// initialization vector from the previous one. The block counter portion
|
|
|
|
// is already incremented by number of blocks, the other 64 bits of the
|
|
|
|
// counter (bytes 0 to 7) is incremented here if the block counter portion
|
|
|
|
// has overflowed.
|
|
|
|
if (counter_overflow_)
|
|
|
|
Increment64(&counter_[0]);
|
|
|
|
iv_ = counter_;
|
|
|
|
}
|
|
|
|
counter_overflow_ = false;
|
|
|
|
}
|
|
|
|
|
2013-12-17 00:49:56 +00:00
|
|
|
bool AesCtrEncryptor::SetIv(const std::vector<uint8>& iv) {
|
|
|
|
if (!IsIvSizeValid(iv.size())) {
|
|
|
|
LOG(ERROR) << "Invalid IV size: " << iv.size();
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2013-11-12 20:34:58 +00:00
|
|
|
block_offset_ = 0;
|
|
|
|
counter_ = iv_ = iv;
|
|
|
|
counter_.resize(AES_BLOCK_SIZE, 0);
|
2013-12-17 00:49:56 +00:00
|
|
|
return true;
|
2013-11-12 20:34:58 +00:00
|
|
|
}
|
|
|
|
|
2013-12-17 00:49:56 +00:00
|
|
|
AesCbcEncryptor::AesCbcEncryptor() {}
|
|
|
|
AesCbcEncryptor::~AesCbcEncryptor() {}
|
|
|
|
|
|
|
|
bool AesCbcEncryptor::InitializeWithIv(const std::vector<uint8>& key,
|
|
|
|
const std::vector<uint8>& iv) {
|
|
|
|
if (!IsKeySizeValidForAes(key.size())) {
|
|
|
|
LOG(ERROR) << "Invalid AES key size: " << key.size();
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
if (iv.size() != AES_BLOCK_SIZE) {
|
|
|
|
LOG(ERROR) << "Invalid IV size: " << iv.size();
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
encrypt_key_.reset(new AES_KEY());
|
|
|
|
CHECK_EQ(AES_set_encrypt_key(&key[0], key.size() * 8, encrypt_key_.get()), 0);
|
|
|
|
|
|
|
|
iv_ = iv;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
void AesCbcEncryptor::Encrypt(const std::string& plaintext,
|
|
|
|
std::string* ciphertext) {
|
|
|
|
DCHECK(ciphertext);
|
|
|
|
DCHECK(encrypt_key_);
|
|
|
|
|
|
|
|
// Pad the input with PKCS5 padding.
|
|
|
|
const size_t num_padding_bytes =
|
|
|
|
AES_BLOCK_SIZE - (plaintext.size() % AES_BLOCK_SIZE);
|
|
|
|
std::string padded_text = plaintext;
|
|
|
|
padded_text.append(num_padding_bytes, static_cast<char>(num_padding_bytes));
|
|
|
|
|
|
|
|
ciphertext->resize(padded_text.size());
|
2014-04-24 16:59:07 +00:00
|
|
|
std::vector<uint8> iv(iv_);
|
2013-12-17 00:49:56 +00:00
|
|
|
AES_cbc_encrypt(reinterpret_cast<const uint8*>(padded_text.data()),
|
|
|
|
reinterpret_cast<uint8*>(string_as_array(ciphertext)),
|
|
|
|
padded_text.size(),
|
|
|
|
encrypt_key_.get(),
|
2014-04-24 16:59:07 +00:00
|
|
|
&iv[0],
|
2013-12-17 00:49:56 +00:00
|
|
|
AES_ENCRYPT);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool AesCbcEncryptor::SetIv(const std::vector<uint8>& iv) {
|
|
|
|
if (iv.size() != AES_BLOCK_SIZE) {
|
|
|
|
LOG(ERROR) << "Invalid IV size: " << iv.size();
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
iv_ = iv;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
AesCbcDecryptor::AesCbcDecryptor() {}
|
|
|
|
AesCbcDecryptor::~AesCbcDecryptor() {}
|
|
|
|
|
|
|
|
bool AesCbcDecryptor::InitializeWithIv(const std::vector<uint8>& key,
|
|
|
|
const std::vector<uint8>& iv) {
|
|
|
|
if (!IsKeySizeValidForAes(key.size())) {
|
|
|
|
LOG(ERROR) << "Invalid AES key size: " << key.size();
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
if (iv.size() != AES_BLOCK_SIZE) {
|
|
|
|
LOG(ERROR) << "Invalid IV size: " << iv.size();
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
decrypt_key_.reset(new AES_KEY());
|
|
|
|
CHECK_EQ(AES_set_decrypt_key(&key[0], key.size() * 8, decrypt_key_.get()), 0);
|
|
|
|
|
|
|
|
iv_ = iv;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool AesCbcDecryptor::Decrypt(const std::string& ciphertext,
|
|
|
|
std::string* plaintext) {
|
|
|
|
if ((ciphertext.size() % AES_BLOCK_SIZE) != 0) {
|
|
|
|
LOG(ERROR) << "Expecting cipher text size to be multiple of "
|
|
|
|
<< AES_BLOCK_SIZE << ", got " << ciphertext.size();
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
DCHECK(plaintext);
|
|
|
|
DCHECK(decrypt_key_);
|
|
|
|
|
|
|
|
plaintext->resize(ciphertext.size());
|
|
|
|
AES_cbc_encrypt(reinterpret_cast<const uint8*>(ciphertext.data()),
|
|
|
|
reinterpret_cast<uint8*>(string_as_array(plaintext)),
|
|
|
|
ciphertext.size(),
|
|
|
|
decrypt_key_.get(),
|
|
|
|
&iv_[0],
|
|
|
|
AES_DECRYPT);
|
|
|
|
|
|
|
|
// Strip off PKCS5 padding bytes.
|
|
|
|
const uint8 num_padding_bytes = (*plaintext)[plaintext->size() - 1];
|
|
|
|
if (num_padding_bytes > AES_BLOCK_SIZE) {
|
|
|
|
LOG(ERROR) << "Padding length is too large : "
|
|
|
|
<< static_cast<int>(num_padding_bytes);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
plaintext->resize(plaintext->size() - num_padding_bytes);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool AesCbcDecryptor::SetIv(const std::vector<uint8>& iv) {
|
|
|
|
if (iv.size() != AES_BLOCK_SIZE) {
|
|
|
|
LOG(ERROR) << "Invalid IV size: " << iv.size();
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
iv_ = iv;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace media
|
2014-09-19 20:41:13 +00:00
|
|
|
} // namespace edash_packager
|