shaka-packager/packager/media/base/rsa_key.cc

284 lines
8.6 KiB
C++
Raw Normal View History

// Copyright 2014 Google LLC. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
//
// RSA signature details:
// Algorithm: RSASSA-PSS
// Hash algorithm: SHA1
// Mask generation function: mgf1SHA1
// Salt length: 20 bytes
// Trailer field: 0xbc
//
// RSA encryption details:
// Algorithm: RSA-OAEP
// Mask generation function: mgf1SHA1
// Label (encoding paramter): empty std::string
#include <packager/media/base/rsa_key.h>
#include <memory>
#include <vector>
#include <glog/logging.h>
#include <mbedtls/error.h>
#include <mbedtls/md.h>
namespace {
const size_t kPssSaltLength = 20u;
std::string mbedtls_strerr(int rv) {
// There is always a "high level" error.
std::string output(mbedtls_high_level_strerr(rv));
// Some errors have a "low level" error, which is like an inner error code
// with a deeper explanation. But on mac and Windows, ostream crashes if you
// give it NULL. So we combine them ourselves with a NULL check.
const char* low_level_error = mbedtls_low_level_strerr(rv);
if (low_level_error) {
output += ": ";
output += low_level_error;
}
return output;
}
std::string sha1(const std::string& message) {
const mbedtls_md_info_t* md_info = mbedtls_md_info_from_type(MBEDTLS_MD_SHA1);
DCHECK(md_info);
std::string hash(mbedtls_md_get_size(md_info), 0);
CHECK_EQ(0,
mbedtls_md(md_info, reinterpret_cast<const uint8_t*>(message.data()),
message.size(), reinterpret_cast<uint8_t*>(hash.data())));
return hash;
}
} // namespace
namespace shaka {
namespace media {
RsaPrivateKey::RsaPrivateKey() {
mbedtls_pk_init(&pk_context_);
mbedtls_entropy_init(&entropy_context_);
mbedtls_ctr_drbg_init(&prng_context_);
}
RsaPrivateKey::~RsaPrivateKey() {
mbedtls_pk_free(&pk_context_);
mbedtls_entropy_free(&entropy_context_);
mbedtls_ctr_drbg_free(&prng_context_);
}
RsaPrivateKey* RsaPrivateKey::Create(const std::string& serialized_key) {
std::unique_ptr<RsaPrivateKey> key(new RsaPrivateKey());
if (!key->Deserialize(serialized_key)) {
return NULL;
}
return key.release();
}
bool RsaPrivateKey::Deserialize(const std::string& serialized_key) {
const mbedtls_pk_info_t* pk_info = mbedtls_pk_info_from_type(MBEDTLS_PK_RSA);
DCHECK(pk_info);
CHECK_EQ(mbedtls_ctr_drbg_seed(&prng_context_, mbedtls_entropy_func,
&entropy_context_, /* custom= */ NULL,
/* custom_len= */ 0),
0);
int rv = mbedtls_pk_parse_key(
&pk_context_, reinterpret_cast<const uint8_t*>(serialized_key.data()),
serialized_key.size(),
/* password= */ NULL,
/* password_len= */ 0, mbedtls_ctr_drbg_random, &prng_context_);
if (rv != 0) {
LOG(ERROR) << "RSA private key failed to load: " << mbedtls_strerr(rv);
return false;
}
// Set the padding mode and digest mode.
mbedtls_rsa_context* rsa_context = mbedtls_pk_rsa(pk_context_);
rv = mbedtls_rsa_set_padding(rsa_context, MBEDTLS_RSA_PKCS_V21,
MBEDTLS_MD_SHA1);
if (rv != 0) {
LOG(ERROR) << "RSA private key failed to set padding: "
<< mbedtls_strerr(rv);
return false;
}
return true;
}
bool RsaPrivateKey::Decrypt(const std::string& encrypted_message,
std::string* decrypted_message) {
DCHECK(decrypted_message);
mbedtls_rsa_context* rsa_context = mbedtls_pk_rsa(pk_context_);
size_t rsa_size = mbedtls_rsa_get_len(rsa_context);
if (encrypted_message.size() != rsa_size) {
LOG(ERROR) << "Encrypted RSA message has the wrong size (expected "
<< rsa_size << ", actual " << encrypted_message.size() << ").";
return false;
}
decrypted_message->resize(encrypted_message.size());
size_t decrypted_size = 0;
int rv = mbedtls_rsa_rsaes_oaep_decrypt(
rsa_context, mbedtls_ctr_drbg_random, &prng_context_,
/* label= */ NULL,
/* label_len= */ 0, &decrypted_size,
reinterpret_cast<const uint8_t*>(encrypted_message.data()),
reinterpret_cast<uint8_t*>(decrypted_message->data()),
decrypted_message->size());
if (rv != 0) {
LOG(ERROR) << "RSA private decrypt failure: " << mbedtls_strerr(rv);
return false;
}
decrypted_message->resize(decrypted_size);
return true;
}
bool RsaPrivateKey::GenerateSignature(const std::string& message,
std::string* signature) {
DCHECK(signature);
if (message.empty()) {
LOG(ERROR) << "Message to be signed is empty.";
return false;
}
mbedtls_rsa_context* rsa_context = mbedtls_pk_rsa(pk_context_);
size_t rsa_size = mbedtls_rsa_get_len(rsa_context);
signature->resize(rsa_size);
std::string hash = sha1(message);
int rv = mbedtls_rsa_rsassa_pss_sign_ext(
rsa_context, mbedtls_ctr_drbg_random, &prng_context_, MBEDTLS_MD_SHA1,
static_cast<unsigned int>(hash.size()),
reinterpret_cast<const uint8_t*>(hash.data()), kPssSaltLength,
reinterpret_cast<uint8_t*>(signature->data()));
if (rv != 0) {
LOG(ERROR) << "RSA sign failure: " << mbedtls_strerr(rv);
return false;
}
return true;
}
RsaPublicKey::RsaPublicKey() {
mbedtls_pk_init(&pk_context_);
mbedtls_entropy_init(&entropy_context_);
mbedtls_ctr_drbg_init(&prng_context_);
}
RsaPublicKey::~RsaPublicKey() {
mbedtls_pk_free(&pk_context_);
mbedtls_entropy_free(&entropy_context_);
mbedtls_ctr_drbg_free(&prng_context_);
}
RsaPublicKey* RsaPublicKey::Create(const std::string& serialized_key) {
std::unique_ptr<RsaPublicKey> key(new RsaPublicKey());
if (!key->Deserialize(serialized_key)) {
return NULL;
}
return key.release();
}
bool RsaPublicKey::Deserialize(const std::string& serialized_key) {
const mbedtls_pk_info_t* pk_info = mbedtls_pk_info_from_type(MBEDTLS_PK_RSA);
DCHECK(pk_info);
CHECK_EQ(mbedtls_ctr_drbg_seed(&prng_context_, mbedtls_entropy_func,
&entropy_context_, /* custom= */ NULL,
/* custom_len= */ 0),
0);
int rv = mbedtls_pk_parse_public_key(
&pk_context_, reinterpret_cast<const uint8_t*>(serialized_key.data()),
serialized_key.size());
if (rv != 0) {
LOG(ERROR) << "RSA public key failed to load: " << mbedtls_strerr(rv);
return false;
}
// Set the padding mode and digest mode.
mbedtls_rsa_context* rsa_context = mbedtls_pk_rsa(pk_context_);
rv = mbedtls_rsa_set_padding(rsa_context, MBEDTLS_RSA_PKCS_V21,
MBEDTLS_MD_SHA1);
if (rv != 0) {
LOG(ERROR) << "RSA public key failed to set padding: "
<< mbedtls_strerr(rv);
return false;
}
return true;
}
bool RsaPublicKey::Encrypt(const std::string& clear_message,
std::string* encrypted_message) {
DCHECK(encrypted_message);
if (clear_message.empty()) {
LOG(ERROR) << "Message to be encrypted is empty.";
return false;
}
mbedtls_rsa_context* rsa_context = mbedtls_pk_rsa(pk_context_);
size_t rsa_size = mbedtls_rsa_get_len(rsa_context);
encrypted_message->resize(rsa_size);
int rv = mbedtls_rsa_rsaes_oaep_encrypt(
rsa_context, mbedtls_ctr_drbg_random, &prng_context_,
/* label= */ NULL,
/* label_len= */ 0, clear_message.size(),
reinterpret_cast<const uint8_t*>(clear_message.data()),
reinterpret_cast<uint8_t*>(encrypted_message->data()));
if (rv != 0) {
LOG(ERROR) << "RSA public encrypt failure: " << mbedtls_strerr(rv);
return false;
}
return true;
}
bool RsaPublicKey::VerifySignature(const std::string& message,
const std::string& signature) {
if (message.empty()) {
LOG(ERROR) << "Signed message is empty.";
return false;
}
mbedtls_rsa_context* rsa_context = mbedtls_pk_rsa(pk_context_);
size_t rsa_size = mbedtls_rsa_get_len(rsa_context);
if (signature.size() != rsa_size) {
LOG(ERROR) << "Message signature is of the wrong size (expected "
<< rsa_size << ", actual " << signature.size() << ").";
return false;
}
// Verify the signature.
std::string hash = sha1(message);
int rv = mbedtls_rsa_rsassa_pss_verify_ext(
rsa_context, MBEDTLS_MD_SHA1, static_cast<unsigned int>(hash.size()),
reinterpret_cast<const uint8_t*>(hash.data()), MBEDTLS_MD_SHA1,
kPssSaltLength, reinterpret_cast<const uint8_t*>(signature.data()));
if (rv != 0) {
LOG(ERROR) << "RSA signature verification failed: " << mbedtls_strerr(rv);
return false;
}
return true;
}
} // namespace media
} // namespace shaka