shaka-packager/packager/media/codecs/aac_audio_specific_config.cc

381 lines
12 KiB
C++
Raw Normal View History

// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "packager/media/codecs/aac_audio_specific_config.h"
#include <algorithm>
#include "packager/base/logging.h"
#include "packager/media/base/bit_reader.h"
#include "packager/media/base/rcheck.h"
namespace shaka {
namespace media {
namespace {
// Sampling Frequency Index table, from ISO 14496-3 Table 1.16
static const uint32_t kSampleRates[] = {96000, 88200, 64000, 48000, 44100,
32000, 24000, 22050, 16000, 12000,
11025, 8000, 7350};
// Channel Configuration table, from ISO 14496-3 Table 1.17
const uint8_t kChannelConfigs[] = {0, 1, 2, 3, 4, 5, 6, 8};
// ISO 14496-3 Table 4.2 Syntax of program_config_element()
// program_config_element()
// ...
// element_is_cpe[i]; 1 bslbf
// element_tag_select[i]; 4 uimsbf
bool CountChannels(uint8_t num_elements,
uint8_t* num_channels,
BitReader* bit_reader) {
for (uint8_t i = 0; i < num_elements; ++i) {
bool is_pair = false;
RCHECK(bit_reader->ReadBits(1, &is_pair));
*num_channels += is_pair ? 2 : 1;
RCHECK(bit_reader->SkipBits(4));
}
return true;
}
} // namespace
AACAudioSpecificConfig::AACAudioSpecificConfig() {}
AACAudioSpecificConfig::~AACAudioSpecificConfig() {}
bool AACAudioSpecificConfig::Parse(const std::vector<uint8_t>& data) {
if (data.empty())
return false;
BitReader reader(&data[0], data.size());
uint8_t extension_type = AOT_NULL;
uint8_t extension_frequency_index = 0xff;
sbr_present_ = false;
ps_present_ = false;
frequency_ = 0;
extension_frequency_ = 0;
// The following code is written according to ISO 14496 Part 3 Table 1.13 -
// Syntax of AudioSpecificConfig.
// Read base configuration.
// Audio Object Types specified in ISO 14496-3, Table 1.15.
RCHECK(reader.ReadBits(5, &audio_object_type_));
// Audio objects type >=31 is not supported yet.
RCHECK(audio_object_type_ < 31);
RCHECK(reader.ReadBits(4, &frequency_index_));
if (frequency_index_ == 0xf)
RCHECK(reader.ReadBits(24, &frequency_));
RCHECK(reader.ReadBits(4, &channel_config_));
RCHECK(channel_config_ < arraysize(kChannelConfigs));
num_channels_ = kChannelConfigs[channel_config_];
// Read extension configuration.
if (audio_object_type_ == AOT_SBR || audio_object_type_ == AOT_PS) {
sbr_present_ = audio_object_type_ == AOT_SBR;
ps_present_ = audio_object_type_ == AOT_PS;
extension_type = AOT_SBR;
RCHECK(reader.ReadBits(4, &extension_frequency_index));
if (extension_frequency_index == 0xf)
RCHECK(reader.ReadBits(24, &extension_frequency_));
RCHECK(reader.ReadBits(5, &audio_object_type_));
// Audio objects type >=31 is not supported yet.
RCHECK(audio_object_type_ < 31);
}
RCHECK(ParseDecoderGASpecificConfig(&reader));
RCHECK(SkipErrorSpecificConfig());
// Read extension configuration again
// Note: The check for 16 available bits comes from the AAC spec.
if (extension_type != AOT_SBR && reader.bits_available() >= 16) {
uint16_t sync_extension_type;
uint8_t sbr_present_flag;
uint8_t ps_present_flag;
if (reader.ReadBits(11, &sync_extension_type) &&
sync_extension_type == 0x2b7) {
if (reader.ReadBits(5, &extension_type) && extension_type == 5) {
RCHECK(reader.ReadBits(1, &sbr_present_flag));
sbr_present_ = sbr_present_flag != 0;
if (sbr_present_flag) {
RCHECK(reader.ReadBits(4, &extension_frequency_index));
if (extension_frequency_index == 0xf)
RCHECK(reader.ReadBits(24, &extension_frequency_));
// Note: The check for 12 available bits comes from the AAC spec.
if (reader.bits_available() >= 12) {
RCHECK(reader.ReadBits(11, &sync_extension_type));
if (sync_extension_type == 0x548) {
RCHECK(reader.ReadBits(1, &ps_present_flag));
ps_present_ = ps_present_flag != 0;
}
}
}
}
}
}
if (frequency_ == 0) {
RCHECK(frequency_index_ < arraysize(kSampleRates));
frequency_ = kSampleRates[frequency_index_];
}
if (extension_frequency_ == 0 && extension_frequency_index != 0xff) {
RCHECK(extension_frequency_index < arraysize(kSampleRates));
extension_frequency_ = kSampleRates[extension_frequency_index];
}
return frequency_ != 0 && num_channels_ != 0 && audio_object_type_ >= 1 &&
audio_object_type_ <= 4 && frequency_index_ != 0xf &&
channel_config_ <= 7;
}
bool AACAudioSpecificConfig::ConvertToADTS(
const uint8_t* data,
size_t data_size,
std::vector<uint8_t>* audio_frame) const {
DCHECK(audio_object_type_ >= 1 && audio_object_type_ <= 4 &&
frequency_index_ != 0xf && channel_config_ <= 7);
size_t size = kADTSHeaderSize + data_size;
// ADTS header uses 13 bits for packet size.
if (size >= (1 << 13))
return false;
audio_frame->reserve(size);
audio_frame->resize(kADTSHeaderSize);
audio_frame->at(0) = 0xff;
audio_frame->at(1) = 0xf1;
audio_frame->at(2) = ((audio_object_type_ - 1) << 6) +
(frequency_index_ << 2) + (channel_config_ >> 2);
audio_frame->at(3) =
((channel_config_ & 0x3) << 6) + static_cast<uint8_t>(size >> 11);
audio_frame->at(4) = static_cast<uint8_t>((size & 0x7ff) >> 3);
audio_frame->at(5) = static_cast<uint8_t>(((size & 7) << 5) + 0x1f);
audio_frame->at(6) = 0xfc;
audio_frame->insert(audio_frame->end(), data, data + data_size);
return true;
}
AACAudioSpecificConfig::AudioObjectType
AACAudioSpecificConfig::GetAudioObjectType() const {
if (ps_present_)
return AOT_PS;
if (sbr_present_)
return AOT_SBR;
return audio_object_type_;
}
uint32_t AACAudioSpecificConfig::GetSamplesPerSecond() const {
if (extension_frequency_ > 0)
return extension_frequency_;
if (!sbr_present_)
return frequency_;
// The following code is written according to ISO 14496 Part 3 Table 1.11 and
// Table 1.22. (Table 1.11 refers to the capping to 48000, Table 1.22 refers
// to SBR doubling the AAC sample rate.)
DCHECK_GT(frequency_, 0u);
return std::min(2 * frequency_, 48000u);
}
uint8_t AACAudioSpecificConfig::GetNumChannels() const {
// Check for implicit signalling of HE-AAC and indicate stereo output
// if the mono channel configuration is signalled.
// See ISO-14496-3 Section 1.6.6.1.2 for details about this special casing.
if (sbr_present_ && channel_config_ == 1)
return 2; // CHANNEL_LAYOUT_STEREO
// When Parametric Stereo is on, mono will be played as stereo.
if (ps_present_ && channel_config_ == 1)
return 2; // CHANNEL_LAYOUT_STEREO
return num_channels_;
}
// Currently this function only support GASpecificConfig defined in
// ISO 14496 Part 3 Table 4.1 - Syntax of GASpecificConfig()
bool AACAudioSpecificConfig::ParseDecoderGASpecificConfig(
BitReader* bit_reader) {
switch (audio_object_type_) {
case 1:
case 2:
case 3:
case 4:
case 6:
case 7:
case 17:
case 19:
case 20:
case 21:
case 22:
case 23:
return ParseGASpecificConfig(bit_reader);
default:
break;
}
return false;
}
bool AACAudioSpecificConfig::SkipErrorSpecificConfig() const {
switch (audio_object_type_) {
case 17:
case 19:
case 20:
case 21:
case 22:
case 23:
case 24:
case 25:
case 26:
case 27:
return false;
default:
break;
}
return true;
}
// The following code is written according to ISO 14496 part 3 Table 4.1 -
// GASpecificConfig.
bool AACAudioSpecificConfig::ParseGASpecificConfig(BitReader* bit_reader) {
uint8_t extension_flag = 0;
uint8_t depends_on_core_coder;
uint16_t dummy;
RCHECK(bit_reader->ReadBits(1, &dummy)); // frameLengthFlag
RCHECK(bit_reader->ReadBits(1, &depends_on_core_coder));
if (depends_on_core_coder == 1)
RCHECK(bit_reader->ReadBits(14, &dummy)); // coreCoderDelay
RCHECK(bit_reader->ReadBits(1, &extension_flag));
if (channel_config_ == 0)
RCHECK(ParseProgramConfigElement(bit_reader));
if (audio_object_type_ == 6 || audio_object_type_ == 20)
RCHECK(bit_reader->ReadBits(3, &dummy)); // layerNr
if (extension_flag) {
if (audio_object_type_ == 22) {
RCHECK(bit_reader->ReadBits(5, &dummy)); // numOfSubFrame
RCHECK(bit_reader->ReadBits(11, &dummy)); // layer_length
}
if (audio_object_type_ == 17 || audio_object_type_ == 19 ||
audio_object_type_ == 20 || audio_object_type_ == 23) {
RCHECK(bit_reader->ReadBits(3, &dummy)); // resilience flags
}
RCHECK(bit_reader->ReadBits(1, &dummy)); // extensionFlag3
}
return true;
}
// ISO 14496-3 Table 4.2 Syntax of program_config_element()
// program_config_element()
// {
// element_instance_tag; 4 uimsbf
// object_type; 2 uimsbf
// sampling_frequency_index; 4 uimsbf
// num_front_channel_elements; 4 uimsbf
// num_side_channel_elements; 4 uimsbf
// num_back_channel_elements; 4 uimsbf
// num_lfe_channel_elements; 2 uimsbf
// num_assoc_data_elements; 3 uimsbf
// num_valid_cc_elements; 4 uimsbf
// mono_mixdown_present; 1 uimsbf
// if (mono_mixdown_present == 1)
// mono_mixdown_element_number; 4 uimsbf
// stereo_mixdown_present; 1 uimsbf
// if (stereo_mixdown_present == 1)
// stereo_mixdown_element_number; 4 uimsbf
// matrix_mixdown_idx_present; 1 uimsbf
// if (matrix_mixdown_idx_present == 1) {
// matrix_mixdown_idx ; 2 uimsbf
// pseudo_surround_enable; 1 uimsbf
// }
// for (i = 0; i < num_front_channel_elements; i++) {
// front_element_is_cpe[i]; 1 bslbf
// front_element_tag_select[i]; 4 uimsbf
// }
// for (i = 0; i < num_side_channel_elements; i++) {
// side_element_is_cpe[i]; 1 bslbf
// side_element_tag_select[i]; 4 uimsbf
// }
// for (i = 0; i < num_back_channel_elements; i++) {
// back_element_is_cpe[i]; 1 bslbf
// back_element_tag_select[i]; 4 uimsbf
// }
// for (i = 0; i < num_lfe_channel_elements; i++)
// lfe_element_tag_select[i]; 4 uimsbf
// for ( i = 0; i < num_assoc_data_elements; i++)
// assoc_data_element_tag_select[i]; 4 uimsbf
// for (i = 0; i < num_valid_cc_elements; i++) {
// cc_element_is_ind_sw[i]; 1 uimsbf
// valid_cc_element_tag_select[i]; 4 uimsbf
// }
// byte_alignment(); Note 1
// comment_field_bytes; 8 uimsbf
// for (i = 0; i < comment_field_bytes; i++)
// comment_field_data[i]; 8 uimsbf
// }
// Note 1: If called from within an AudioSpecificConfig(), this
// byte_alignment shall be relative to the start of the AudioSpecificConfig().
bool AACAudioSpecificConfig::ParseProgramConfigElement(BitReader* bit_reader) {
// element_instance_tag (4), object_type (2), sampling_frequency_index (4).
RCHECK(bit_reader->SkipBits(4 + 2 + 4));
uint8_t num_front_channel_elements = 0;
uint8_t num_side_channel_elements = 0;
uint8_t num_back_channel_elements = 0;
uint8_t num_lfe_channel_elements = 0;
RCHECK(bit_reader->ReadBits(4, &num_front_channel_elements));
RCHECK(bit_reader->ReadBits(4, &num_side_channel_elements));
RCHECK(bit_reader->ReadBits(4, &num_back_channel_elements));
RCHECK(bit_reader->ReadBits(2, &num_lfe_channel_elements));
uint8_t num_assoc_data_elements = 0;
RCHECK(bit_reader->ReadBits(3, &num_assoc_data_elements));
uint8_t num_valid_cc_elements = 0;
RCHECK(bit_reader->ReadBits(4, &num_valid_cc_elements));
RCHECK(bit_reader->SkipBitsConditional(true, 4)); // mono_mixdown
RCHECK(bit_reader->SkipBitsConditional(true, 4)); // stereo_mixdown
RCHECK(bit_reader->SkipBitsConditional(true, 3)); // matrix_mixdown_idx
num_channels_ = 0;
RCHECK(CountChannels(num_front_channel_elements, &num_channels_, bit_reader));
RCHECK(CountChannels(num_side_channel_elements, &num_channels_, bit_reader));
RCHECK(CountChannels(num_back_channel_elements, &num_channels_, bit_reader));
num_channels_ += num_lfe_channel_elements;
RCHECK(bit_reader->SkipBits(4 * num_lfe_channel_elements));
RCHECK(bit_reader->SkipBits(4 * num_assoc_data_elements));
RCHECK(bit_reader->SkipBits(5 * num_valid_cc_elements));
bit_reader->SkipToNextByte();
uint8_t comment_field_bytes = 0;
RCHECK(bit_reader->ReadBits(8, &comment_field_bytes));
RCHECK(bit_reader->SkipBytes(comment_field_bytes));
return true;
}
} // namespace media
} // namespace shaka