shaka-packager/media/base/aes_encryptor_unittest.cc

441 lines
17 KiB
C++
Raw Normal View History

// Copyright (c) 2013 Google Inc. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/base/aes_encryptor.h"
#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
#include "base/strings/string_number_conversions.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace {
const uint32 kAesBlockSize = 16;
// From NIST SP 800-38a test case: - F.5.1 CTR-AES128.Encrypt
// http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
const uint8 kAesCtrKey[] = {0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c};
const uint8 kAesCtrIv[] = {0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff};
const uint8 kAesCtrPlaintext[] = {
// Block #1
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
// Block #2
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
// Block #3
0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,
0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
// Block #4
0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17,
0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10};
const uint8 kAesCtrCiphertext[] = {
// Block #1
0x87, 0x4d, 0x61, 0x91, 0xb6, 0x20, 0xe3, 0x26,
0x1b, 0xef, 0x68, 0x64, 0x99, 0x0d, 0xb6, 0xce,
// Block #2
0x98, 0x06, 0xf6, 0x6b, 0x79, 0x70, 0xfd, 0xff,
0x86, 0x17, 0x18, 0x7b, 0xb9, 0xff, 0xfd, 0xff,
// Block #3
0x5a, 0xe4, 0xdf, 0x3e, 0xdb, 0xd5, 0xd3, 0x5e,
0x5b, 0x4f, 0x09, 0x02, 0x0d, 0xb0, 0x3e, 0xab,
// Block #4
0x1e, 0x03, 0x1d, 0xda, 0x2f, 0xbe, 0x03, 0xd1,
0x79, 0x21, 0x70, 0xa0, 0xf3, 0x00, 0x9c, 0xee};
// Subsample test cases.
struct SubsampleTestCase {
const uint8* subsample_sizes;
uint32 subsample_count;
};
const uint8 kSubsampleTest1[] = {64};
const uint8 kSubsampleTest2[] = {13, 51};
const uint8 kSubsampleTest3[] = {52, 12};
const uint8 kSubsampleTest4[] = {16, 48};
const uint8 kSubsampleTest5[] = {3, 16, 45};
const uint8 kSubsampleTest6[] = {18, 12, 34};
const uint8 kSubsampleTest7[] = {8, 16, 2, 38};
const uint8 kSubsampleTest8[] = {10, 1, 33, 20};
const uint8 kSubsampleTest9[] = {7, 19, 6, 32};
const uint8 kSubsampleTest10[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9};
const SubsampleTestCase kSubsampleTestCases[] = {
{kSubsampleTest1, arraysize(kSubsampleTest1)},
{kSubsampleTest2, arraysize(kSubsampleTest2)},
{kSubsampleTest3, arraysize(kSubsampleTest3)},
{kSubsampleTest4, arraysize(kSubsampleTest4)},
{kSubsampleTest5, arraysize(kSubsampleTest5)},
{kSubsampleTest6, arraysize(kSubsampleTest6)},
{kSubsampleTest7, arraysize(kSubsampleTest7)},
{kSubsampleTest8, arraysize(kSubsampleTest8)},
{kSubsampleTest9, arraysize(kSubsampleTest9)},
{kSubsampleTest10, arraysize(kSubsampleTest10)}};
// IV test values.
const uint32 kTextSizeInBytes = 60; // 3 full blocks + 1 partial block.
const uint8 kIv128Zero[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
const uint8 kIv128Two[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2};
const uint8 kIv128Four[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4};
const uint8 kIv128Max64[] = {0, 0, 0, 0, 0, 0, 0, 0,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
const uint8 kIv128OneAndThree[] = {0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 3};
const uint8 kIv128MaxMinusOne[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xfe};
const uint8 kIv64Zero[] = {0, 0, 0, 0, 0, 0, 0, 0};
const uint8 kIv64One[] = {0, 0, 0, 0, 0, 0, 0, 1};
const uint8 kIv64MaxMinusOne[] = {0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xfe};
const uint8 kIv64Max[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
struct IvTestCase {
const uint8* iv_test;
uint32 iv_size;
const uint8* iv_expected;
};
// As recommended in ISO/IEC FDIS 23001-7: CENC spec,
// For 64-bit (8-byte) IV_Sizes, initialization vectors for subsequent samples
// can be created by incrementing the initialization vector of the previous
// sample. For 128-bit (16-byte) IV_Sizes, initialization vectors for subsequent
// samples should be created by adding the block count of the previous sample to
// the initialization vector of the previous sample.
const IvTestCase kIvTestCases[] = {
{kIv128Zero, arraysize(kIv128Zero), kIv128Four},
{kIv128Max64, arraysize(kIv128Max64), kIv128OneAndThree},
{kIv128MaxMinusOne, arraysize(kIv128MaxMinusOne), kIv128Two},
{kIv64Zero, arraysize(kIv64Zero), kIv64One},
{kIv64MaxMinusOne, arraysize(kIv64MaxMinusOne), kIv64Max},
{kIv64Max, arraysize(kIv64Max), kIv64Zero}};
// We support AES 128, i.e. 16 bytes key only.
const uint8 kInvalidKey[] = {0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2,
0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09};
// We support Iv of size 8 or 16 only as defined in CENC spec.
const uint8 kInvalidIv[] = {0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe};
} // namespace
namespace media {
class AesCtrEncryptorTest : public testing::Test {
public:
virtual void SetUp() {
key_.assign(kAesCtrKey, kAesCtrKey + arraysize(kAesCtrKey));
iv_.assign(kAesCtrIv, kAesCtrIv + arraysize(kAesCtrIv));
plaintext_.assign(kAesCtrPlaintext,
kAesCtrPlaintext + arraysize(kAesCtrPlaintext));
ciphertext_.assign(kAesCtrCiphertext,
kAesCtrCiphertext + arraysize(kAesCtrCiphertext));
ASSERT_TRUE(encryptor_.InitializeWithIv(key_, iv_));
}
protected:
std::vector<uint8> key_;
std::vector<uint8> iv_;
std::vector<uint8> plaintext_;
std::vector<uint8> ciphertext_;
AesCtrEncryptor encryptor_;
};
TEST_F(AesCtrEncryptorTest, NistTestCase) {
std::vector<uint8> encrypted;
EXPECT_TRUE(encryptor_.Encrypt(plaintext_, &encrypted));
EXPECT_EQ(ciphertext_, encrypted);
EXPECT_TRUE(encryptor_.SetIv(iv_));
std::vector<uint8> decrypted;
EXPECT_TRUE(encryptor_.Decrypt(encrypted, &decrypted));
EXPECT_EQ(plaintext_, decrypted);
}
TEST_F(AesCtrEncryptorTest, NistTestCaseInplaceEncryptionDecryption) {
std::vector<uint8> buffer = plaintext_;
EXPECT_TRUE(encryptor_.Encrypt(&buffer[0], buffer.size(), &buffer[0]));
EXPECT_EQ(ciphertext_, buffer);
EXPECT_TRUE(encryptor_.SetIv(iv_));
EXPECT_TRUE(encryptor_.Decrypt(&buffer[0], buffer.size(), &buffer[0]));
EXPECT_EQ(plaintext_, buffer);
}
TEST_F(AesCtrEncryptorTest, EncryptDecryptString) {
static const char kPlaintext[] = "normal plaintext of random length";
static const char kExpectedCiphertextInHex[] =
"82E3AD1EF90C5CC09EB37F1B9EFBD99016441A1C15123F0777CD57BB993E14DA02";
std::string ciphertext;
EXPECT_TRUE(encryptor_.Encrypt(kPlaintext, &ciphertext));
EXPECT_EQ(kExpectedCiphertextInHex,
base::HexEncode(ciphertext.data(), ciphertext.size()));
std::string decrypted;
EXPECT_TRUE(encryptor_.SetIv(iv_));
EXPECT_TRUE(encryptor_.Decrypt(ciphertext, &decrypted));
EXPECT_EQ(kPlaintext, decrypted);
}
TEST_F(AesCtrEncryptorTest, 128BitIVBoundaryCaseEncryption) {
// There are four blocks of text in |plaintext_|. The first block should be
// encrypted with IV = kIv128Max64, the subsequent blocks should be encrypted
// with iv 0 to 3.
std::vector<uint8> iv_max64(kIv128Max64,
kIv128Max64 + arraysize(kIv128Max64));
ASSERT_TRUE(encryptor_.InitializeWithIv(key_, iv_max64));
std::vector<uint8> encrypted;
EXPECT_TRUE(encryptor_.Encrypt(plaintext_, &encrypted));
std::vector<uint8> iv_one_and_three(
kIv128OneAndThree, kIv128OneAndThree + arraysize(kIv128OneAndThree));
encryptor_.UpdateIv();
EXPECT_EQ(iv_one_and_three, encryptor_.iv());
ASSERT_TRUE(encryptor_.InitializeWithIv(key_, iv_max64));
std::vector<uint8> encrypted_verify(plaintext_.size(), 0);
EXPECT_TRUE(
encryptor_.Encrypt(&plaintext_[0], kAesBlockSize, &encrypted_verify[0]));
std::vector<uint8> iv_zero(kIv128Zero, kIv128Zero + arraysize(kIv128Zero));
ASSERT_TRUE(encryptor_.InitializeWithIv(key_, iv_zero));
EXPECT_TRUE(encryptor_.Encrypt(&plaintext_[kAesBlockSize],
kAesBlockSize * 3,
&encrypted_verify[kAesBlockSize]));
EXPECT_EQ(encrypted, encrypted_verify);
}
TEST_F(AesCtrEncryptorTest, InitWithRandomIv) {
const uint8 kIvSize = 8;
ASSERT_TRUE(encryptor_.InitializeWithRandomIv(key_, kIvSize));
ASSERT_EQ(kIvSize, encryptor_.iv().size());
LOG(INFO) << "Random IV: " << base::HexEncode(&encryptor_.iv()[0],
encryptor_.iv().size());
}
TEST_F(AesCtrEncryptorTest, UnsupportedKeySize) {
std::vector<uint8> key(kInvalidKey, kInvalidKey + arraysize(kInvalidKey));
ASSERT_FALSE(encryptor_.InitializeWithIv(key, iv_));
}
TEST_F(AesCtrEncryptorTest, UnsupportedIV) {
std::vector<uint8> iv(kInvalidIv, kInvalidIv + arraysize(kInvalidIv));
ASSERT_FALSE(encryptor_.InitializeWithIv(key_, iv));
}
TEST_F(AesCtrEncryptorTest, IncorrectIvSize) {
ASSERT_FALSE(encryptor_.InitializeWithRandomIv(key_, 15));
}
class AesCtrEncryptorSubsampleTest
: public AesCtrEncryptorTest,
public ::testing::WithParamInterface<SubsampleTestCase> {};
TEST_P(AesCtrEncryptorSubsampleTest, NistTestCaseSubsamples) {
const SubsampleTestCase* test_case = &GetParam();
std::vector<uint8> encrypted(plaintext_.size(), 0);
for (uint32 i = 0, offset = 0; i < test_case->subsample_count; ++i) {
uint32 len = test_case->subsample_sizes[i];
EXPECT_TRUE(
encryptor_.Encrypt(&plaintext_[offset], len, &encrypted[offset]));
offset += len;
EXPECT_EQ(offset % kAesBlockSize, encryptor_.block_offset());
}
EXPECT_EQ(ciphertext_, encrypted);
EXPECT_TRUE(encryptor_.SetIv(iv_));
std::vector<uint8> decrypted(encrypted.size(), 0);
for (uint32 i = 0, offset = 0; i < test_case->subsample_count; ++i) {
uint32 len = test_case->subsample_sizes[i];
EXPECT_TRUE(
encryptor_.Decrypt(&encrypted[offset], len, &decrypted[offset]));
offset += len;
EXPECT_EQ(offset % kAesBlockSize, encryptor_.block_offset());
}
EXPECT_EQ(plaintext_, decrypted);
}
INSTANTIATE_TEST_CASE_P(SubsampleTestCases,
AesCtrEncryptorSubsampleTest,
::testing::ValuesIn(kSubsampleTestCases));
class AesCtrEncryptorIvTest : public ::testing::TestWithParam<IvTestCase> {};
TEST_P(AesCtrEncryptorIvTest, IvTest) {
// Some dummy key and plaintext.
std::vector<uint8> key(16, 1);
std::vector<uint8> plaintext(kTextSizeInBytes, 3);
std::vector<uint8> iv_test(GetParam().iv_test,
GetParam().iv_test + GetParam().iv_size);
std::vector<uint8> iv_expected(GetParam().iv_expected,
GetParam().iv_expected + GetParam().iv_size);
AesCtrEncryptor encryptor;
ASSERT_TRUE(encryptor.InitializeWithIv(key, iv_test));
std::vector<uint8> encrypted;
EXPECT_TRUE(encryptor.Encrypt(plaintext, &encrypted));
encryptor.UpdateIv();
EXPECT_EQ(iv_expected, encryptor.iv());
}
INSTANTIATE_TEST_CASE_P(IvTestCases,
AesCtrEncryptorIvTest,
::testing::ValuesIn(kIvTestCases));
class AesCbcEncryptorTestEncryptionDecryption : public testing::Test {
public:
void TestEncryptionDecryption(const std::vector<uint8>& key,
const std::vector<uint8>& iv,
const std::string& plaintext,
const std::string& expected_ciphertext_hex) {
AesCbcEncryptor encryptor;
EXPECT_TRUE(encryptor.InitializeWithIv(key, iv));
std::string ciphertext;
encryptor.Encrypt(plaintext, &ciphertext);
EXPECT_EQ(expected_ciphertext_hex,
base::HexEncode(ciphertext.data(), ciphertext.size()));
AesCbcDecryptor decryptor;
ASSERT_TRUE(decryptor.InitializeWithIv(key, iv));
std::string decrypted;
EXPECT_TRUE(decryptor.Decrypt(ciphertext, &decrypted));
EXPECT_EQ(plaintext, decrypted);
}
};
TEST_F(AesCbcEncryptorTestEncryptionDecryption, EncryptAES256CBC) {
// NIST SP 800-38A test vector F.2.5 CBC-AES256.Encrypt.
static const uint8 kAesCbcKey[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae,
0xf0, 0x85, 0x7d, 0x77, 0x81, 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61,
0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4};
static const uint8 kAesCbcIv[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05,
0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,
0x0c, 0x0d, 0x0e, 0x0f};
static const uint8 kAesCbcPlaintext[] = {
// Block #1
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
// Block #2
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
// Block #3
0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,
0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
// Block #4
0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17,
0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10};
static const uint8 kAesCbcCiphertext[] = {
// Block #1
0xf5, 0x8c, 0x4c, 0x04, 0xd6, 0xe5, 0xf1, 0xba,
0x77, 0x9e, 0xab, 0xfb, 0x5f, 0x7b, 0xfb, 0xd6,
// Block #2
0x9c, 0xfc, 0x4e, 0x96, 0x7e, 0xdb, 0x80, 0x8d,
0x67, 0x9f, 0x77, 0x7b, 0xc6, 0x70, 0x2c, 0x7d,
// Block #3
0x39, 0xf2, 0x33, 0x69, 0xa9, 0xd9, 0xba, 0xcf,
0xa5, 0x30, 0xe2, 0x63, 0x04, 0x23, 0x14, 0x61,
// Block #4
0xb2, 0xeb, 0x05, 0xe2, 0xc3, 0x9b, 0xe9, 0xfc,
0xda, 0x6c, 0x19, 0x07, 0x8c, 0x6a, 0x9d, 0x1b,
// PKCS #5 padding, encrypted.
0x3f, 0x46, 0x17, 0x96, 0xd6, 0xb0, 0xd6, 0xb2,
0xe0, 0xc2, 0xa7, 0x2b, 0x4d, 0x80, 0xe6, 0x44};
const std::vector<uint8> key(kAesCbcKey, kAesCbcKey + arraysize(kAesCbcKey));
const std::vector<uint8> iv(kAesCbcIv, kAesCbcIv + arraysize(kAesCbcIv));
const std::string plaintext(reinterpret_cast<const char*>(kAesCbcPlaintext),
sizeof(kAesCbcPlaintext));
const std::string expected_ciphertext_hex =
base::HexEncode(kAesCbcCiphertext, sizeof(kAesCbcCiphertext));
TestEncryptionDecryption(key, iv, plaintext, expected_ciphertext_hex);
}
TEST_F(AesCbcEncryptorTestEncryptionDecryption, EncryptAES128CBCRegression) {
const std::string kKey = "128=SixteenBytes";
const std::string kIv = "Sweet Sixteen IV";
const std::string kPlaintext =
"Plain text with a g-clef U+1D11E \360\235\204\236";
const std::string kExpectedCiphertextHex =
"D4A67A0BA33C30F207344D81D1E944BBE65587C3D7D9939A"
"C070C62B9C15A3EA312EA4AD1BC7929F4D3C16B03AD5ADA8";
const std::vector<uint8> key(kKey.begin(), kKey.end());
const std::vector<uint8> iv(kIv.begin(), kIv.end());
TestEncryptionDecryption(key, iv, kPlaintext, kExpectedCiphertextHex);
}
TEST_F(AesCbcEncryptorTestEncryptionDecryption, EncryptAES192CBCRegression) {
const std::string kKey = "192bitsIsTwentyFourByte!";
const std::string kIv = "Sweet Sixteen IV";
const std::string kPlaintext = "Small text";
const std::string kExpectedCiphertextHex = "78DE5D7C2714FC5C61346C5416F6C89A";
const std::vector<uint8> key(kKey.begin(), kKey.end());
const std::vector<uint8> iv(kIv.begin(), kIv.end());
TestEncryptionDecryption(key, iv, kPlaintext, kExpectedCiphertextHex);
}
class AesCbcEncryptorTest : public testing::Test {
public:
virtual void SetUp() {
const std::string kKey = "128=SixteenBytes";
const std::string kIv = "Sweet Sixteen IV";
key_.assign(kKey.begin(), kKey.end());
iv_.assign(kIv.begin(), kIv.end());
}
protected:
std::vector<uint8> key_;
std::vector<uint8> iv_;
};
TEST_F(AesCbcEncryptorTest, UnsupportedKeySize) {
AesCbcEncryptor encryptor;
EXPECT_FALSE(encryptor.InitializeWithIv(std::vector<uint8>(15, 0), iv_));
}
TEST_F(AesCbcEncryptorTest, UnsupportedIvSize) {
AesCbcEncryptor encryptor;
EXPECT_FALSE(encryptor.InitializeWithIv(key_, std::vector<uint8>(14, 0)));
}
TEST_F(AesCbcEncryptorTest, EmptyEncrypt) {
AesCbcEncryptor encryptor;
ASSERT_TRUE(encryptor.InitializeWithIv(key_, iv_));
std::string ciphertext;
std::string expected_ciphertext_hex = "8518B8878D34E7185E300D0FCC426396";
encryptor.Encrypt("", &ciphertext);
EXPECT_EQ(expected_ciphertext_hex,
base::HexEncode(ciphertext.data(), ciphertext.size()));
}
TEST_F(AesCbcEncryptorTest, CipherTextNotMultipleOfBlockSize) {
AesCbcDecryptor decryptor;
ASSERT_TRUE(decryptor.InitializeWithIv(key_, iv_));
std::string plaintext;
EXPECT_FALSE(decryptor.Decrypt("1", &plaintext));
}
} // namespace media