shaka-packager/media/formats/mp4/segmenter.cc

389 lines
13 KiB
C++
Raw Normal View History

// Copyright 2014 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
#include "media/formats/mp4/segmenter.h"
#include <algorithm>
#include "base/stl_util.h"
#include "media/base/buffer_writer.h"
#include "media/base/encryption_key_source.h"
#include "media/base/media_sample.h"
#include "media/base/media_stream.h"
#include "media/base/muxer_options.h"
#include "media/base/video_stream_info.h"
#include "media/formats/mp4/box_definitions.h"
#include "media/formats/mp4/key_rotation_fragmenter.h"
namespace media {
namespace mp4 {
namespace {
// Generate 64bit IV by default.
const size_t kDefaultIvSize = 8u;
const size_t kCencKeyIdSize = 16u;
// The version of cenc implemented here. CENC 4.
const int kCencSchemeVersion = 0x00010000;
uint64 Rescale(uint64 time_in_old_scale, uint32 old_scale, uint32 new_scale) {
return static_cast<double>(time_in_old_scale) / old_scale * new_scale;
}
void GenerateSinf(const EncryptionKey& encryption_key,
FourCC old_type,
ProtectionSchemeInfo* sinf) {
sinf->format.format = old_type;
sinf->type.type = FOURCC_CENC;
sinf->type.version = kCencSchemeVersion;
sinf->info.track_encryption.is_encrypted = true;
sinf->info.track_encryption.default_iv_size =
encryption_key.iv.empty() ? kDefaultIvSize : encryption_key.iv.size();
sinf->info.track_encryption.default_kid = encryption_key.key_id;
}
void GenerateEncryptedSampleEntry(const EncryptionKey& encryption_key,
double clear_lead_in_seconds,
SampleDescription* description) {
DCHECK(description);
if (description->type == kVideo) {
DCHECK_EQ(1u, description->video_entries.size());
// Add a second entry for clear content if needed.
if (clear_lead_in_seconds > 0)
description->video_entries.push_back(description->video_entries[0]);
// Convert the first entry to an encrypted entry.
VideoSampleEntry& entry = description->video_entries[0];
GenerateSinf(encryption_key, entry.format, &entry.sinf);
entry.format = FOURCC_ENCV;
} else {
DCHECK_EQ(kAudio, description->type);
DCHECK_EQ(1u, description->audio_entries.size());
// Add a second entry for clear content if needed.
if (clear_lead_in_seconds > 0)
description->audio_entries.push_back(description->audio_entries[0]);
// Convert the first entry to an encrypted entry.
AudioSampleEntry& entry = description->audio_entries[0];
GenerateSinf(encryption_key, entry.format, &entry.sinf);
entry.format = FOURCC_ENCA;
}
}
void GenerateEncryptedSampleEntryForKeyRotation(
double clear_lead_in_seconds,
SampleDescription* description) {
// Fill encrypted sample entry with default key.
EncryptionKey encryption_key;
encryption_key.key_id.assign(kCencKeyIdSize, 0);
GenerateEncryptedSampleEntry(
encryption_key, clear_lead_in_seconds, description);
}
uint8 GetNaluLengthSize(const StreamInfo& stream_info) {
if (stream_info.stream_type() != kStreamVideo)
return 0;
const VideoStreamInfo& video_stream_info =
static_cast<const VideoStreamInfo&>(stream_info);
return video_stream_info.nalu_length_size();
}
EncryptionKeySource::TrackType GetTrackTypeForEncryption(
const StreamInfo& stream_info, uint32 max_sd_pixels) {
if (stream_info.stream_type() == kStreamAudio)
return EncryptionKeySource::TRACK_TYPE_AUDIO;
DCHECK_EQ(kStreamVideo, stream_info.stream_type());
const VideoStreamInfo& video_stream_info =
static_cast<const VideoStreamInfo&>(stream_info);
uint32 pixels = video_stream_info.width() * video_stream_info.height();
return (pixels > max_sd_pixels) ? EncryptionKeySource::TRACK_TYPE_HD
: EncryptionKeySource::TRACK_TYPE_SD;
}
} // namespace
Segmenter::Segmenter(const MuxerOptions& options,
scoped_ptr<FileType> ftyp,
scoped_ptr<Movie> moov)
: options_(options),
ftyp_(ftyp.Pass()),
moov_(moov.Pass()),
moof_(new MovieFragment()),
fragment_buffer_(new BufferWriter()),
sidx_(new SegmentIndex()),
segment_initialized_(false),
end_of_segment_(false) {}
Segmenter::~Segmenter() { STLDeleteElements(&fragmenters_); }
Status Segmenter::Initialize(const std::vector<MediaStream*>& streams,
EncryptionKeySource* encryption_key_source,
uint32 max_sd_pixels,
double clear_lead_in_seconds,
double crypto_period_duration_in_seconds) {
DCHECK_LT(0u, streams.size());
moof_->header.sequence_number = 0;
moof_->tracks.resize(streams.size());
segment_durations_.resize(streams.size());
fragmenters_.resize(streams.size());
for (uint32 i = 0; i < streams.size(); ++i) {
stream_map_[streams[i]] = i;
moof_->tracks[i].header.track_id = i + 1;
if (streams[i]->info()->stream_type() == kStreamVideo) {
// Use the first video stream as the reference stream (which is 1-based).
if (sidx_->reference_id == 0)
sidx_->reference_id = i + 1;
}
if (!encryption_key_source) {
fragmenters_[i] = new Fragmenter(
&moof_->tracks[i], options_.normalize_presentation_timestamp);
continue;
}
uint8 nalu_length_size = GetNaluLengthSize(*streams[i]->info());
EncryptionKeySource::TrackType track_type =
GetTrackTypeForEncryption(*streams[i]->info(), max_sd_pixels);
SampleDescription& description =
moov_->tracks[i].media.information.sample_table.description;
const bool key_rotation_enabled = crypto_period_duration_in_seconds != 0;
if (key_rotation_enabled) {
GenerateEncryptedSampleEntryForKeyRotation(clear_lead_in_seconds,
&description);
fragmenters_[i] = new KeyRotationFragmenter(
moof_.get(),
&moof_->tracks[i],
options_.normalize_presentation_timestamp,
encryption_key_source,
track_type,
crypto_period_duration_in_seconds * streams[i]->info()->time_scale(),
clear_lead_in_seconds * streams[i]->info()->time_scale(),
nalu_length_size);
continue;
}
scoped_ptr<EncryptionKey> encryption_key(new EncryptionKey());
Status status =
encryption_key_source->GetKey(track_type, encryption_key.get());
if (!status.ok())
return status;
GenerateEncryptedSampleEntry(
*encryption_key, clear_lead_in_seconds, &description);
// One and only one pssh box is needed.
if (moov_->pssh.empty()) {
moov_->pssh.resize(1);
moov_->pssh[0].raw_box = encryption_key->pssh;
}
fragmenters_[i] = new EncryptingFragmenter(
&moof_->tracks[i],
options_.normalize_presentation_timestamp,
encryption_key.Pass(),
clear_lead_in_seconds * streams[i]->info()->time_scale(),
nalu_length_size);
}
// Choose the first stream if there is no VIDEO.
if (sidx_->reference_id == 0)
sidx_->reference_id = 1;
sidx_->timescale = streams[GetReferenceStreamId()]->info()->time_scale();
// Use the reference stream's time scale as movie time scale.
moov_->header.timescale = sidx_->timescale;
InitializeFragments();
return DoInitialize();
}
Status Segmenter::Finalize() {
end_of_segment_ = true;
for (std::vector<Fragmenter*>::iterator it = fragmenters_.begin();
it != fragmenters_.end();
++it) {
Status status = FinalizeFragment(*it);
if (!status.ok())
return status;
}
// Set tracks and moov durations.
// Note that the updated moov box will be written to output file for VOD case
// only.
for (std::vector<Track>::iterator track = moov_->tracks.begin();
track != moov_->tracks.end();
++track) {
track->header.duration = Rescale(track->media.header.duration,
track->media.header.timescale,
moov_->header.timescale);
if (track->header.duration > moov_->header.duration)
moov_->header.duration = track->header.duration;
}
return DoFinalize();
}
Status Segmenter::AddSample(const MediaStream* stream,
scoped_refptr<MediaSample> sample) {
// Find the fragmenter for this stream.
DCHECK(stream);
DCHECK(stream_map_.find(stream) != stream_map_.end());
uint32 stream_id = stream_map_[stream];
Fragmenter* fragmenter = fragmenters_[stream_id];
// Set default sample duration if it has not been set yet.
if (moov_->extends.tracks[stream_id].default_sample_duration == 0) {
moov_->extends.tracks[stream_id].default_sample_duration =
sample->duration();
}
if (!segment_initialized_) {
InitializeSegment();
segment_initialized_ = true;
}
if (fragmenter->fragment_finalized()) {
return Status(error::FRAGMENT_FINALIZED,
"Current fragment is finalized already.");
}
bool finalize_fragment = false;
if (fragmenter->fragment_duration() >=
options_.fragment_duration * stream->info()->time_scale()) {
if (sample->is_key_frame() || !options_.fragment_sap_aligned) {
finalize_fragment = true;
}
}
if (segment_durations_[stream_id] >=
options_.segment_duration * stream->info()->time_scale()) {
if (sample->is_key_frame() || !options_.segment_sap_aligned) {
end_of_segment_ = true;
finalize_fragment = true;
}
}
Status status;
if (finalize_fragment) {
status = FinalizeFragment(fragmenter);
if (!status.ok())
return status;
}
status = fragmenter->AddSample(sample);
if (!status.ok())
return status;
moov_->tracks[stream_id].media.header.duration += sample->duration();
segment_durations_[stream_id] += sample->duration();
return Status::OK;
}
uint32 Segmenter::GetReferenceTimeScale() const {
return moov_->header.timescale;
}
double Segmenter::GetDuration() const {
if (moov_->header.timescale == 0) {
// Handling the case where this is not properly initialized.
return 0.0;
}
return static_cast<double>(moov_->header.duration) / moov_->header.timescale;
}
void Segmenter::InitializeSegment() {
sidx_->references.clear();
end_of_segment_ = false;
std::vector<uint64>::iterator it = segment_durations_.begin();
for (; it != segment_durations_.end(); ++it)
*it = 0;
}
Status Segmenter::FinalizeSegment() {
segment_initialized_ = false;
return DoFinalizeSegment();
}
uint32 Segmenter::GetReferenceStreamId() {
DCHECK(sidx_);
return sidx_->reference_id - 1;
}
Status Segmenter::InitializeFragments() {
++moof_->header.sequence_number;
Status status;
for (std::vector<Fragmenter*>::iterator it = fragmenters_.begin();
it != fragmenters_.end();
++it) {
status = (*it)->InitializeFragment();
if (!status.ok())
return status;
}
return Status::OK;
}
Status Segmenter::FinalizeFragment(Fragmenter* fragmenter) {
fragmenter->FinalizeFragment();
// Check if all tracks are ready for fragmentation.
for (std::vector<Fragmenter*>::iterator it = fragmenters_.begin();
it != fragmenters_.end();
++it) {
if (!(*it)->fragment_finalized())
return Status::OK;
}
MediaData mdat;
// Fill in data offsets. Data offset base is moof size + mdat box size.
// (mdat is still empty, mdat size is the same as mdat box size).
uint64 base = moof_->ComputeSize() + mdat.ComputeSize();
for (uint i = 0; i < moof_->tracks.size(); ++i) {
TrackFragment& traf = moof_->tracks[i];
Fragmenter* fragmenter = fragmenters_[i];
if (fragmenter->aux_data()->Size() > 0) {
traf.auxiliary_offset.offsets[0] += base;
base += fragmenter->aux_data()->Size();
}
traf.runs[0].data_offset += base;
base += fragmenter->data()->Size();
}
// Generate segment reference.
sidx_->references.resize(sidx_->references.size() + 1);
fragmenters_[GetReferenceStreamId()]->GenerateSegmentReference(
&sidx_->references[sidx_->references.size() - 1]);
sidx_->references[sidx_->references.size() - 1].referenced_size = base;
// Write the fragment to buffer.
moof_->Write(fragment_buffer_.get());
for (uint i = 0; i < moof_->tracks.size(); ++i) {
Fragmenter* fragmenter = fragmenters_[i];
mdat.data_size =
fragmenter->aux_data()->Size() + fragmenter->data()->Size();
mdat.Write(fragment_buffer_.get());
if (fragmenter->aux_data()->Size()) {
fragment_buffer_->AppendBuffer(*fragmenter->aux_data());
}
fragment_buffer_->AppendBuffer(*fragmenter->data());
}
InitializeFragments();
if (end_of_segment_)
return FinalizeSegment();
return Status::OK;
}
} // namespace mp4
} // namespace media