shaka-packager/packager/media/crypto/encryption_handler.cc

416 lines
16 KiB
C++
Raw Normal View History

// Copyright 2017 Google LLC. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
#include <packager/media/crypto/encryption_handler.h>
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <absl/log/check.h>
#include <packager/macros.h>
#include <packager/media/base/aes_encryptor.h>
#include <packager/media/base/audio_stream_info.h>
#include <packager/media/base/common_pssh_generator.h>
#include <packager/media/base/key_source.h>
#include <packager/media/base/macros.h>
#include <packager/media/base/media_sample.h>
#include <packager/media/base/playready_pssh_generator.h>
#include <packager/media/base/protection_system_ids.h>
#include <packager/media/base/video_stream_info.h>
#include <packager/media/base/widevine_pssh_generator.h>
#include <packager/media/crypto/aes_encryptor_factory.h>
#include <packager/media/crypto/subsample_generator.h>
#include <packager/status/status_macros.h>
namespace shaka {
namespace media {
namespace {
// The encryption handler only supports a single output.
const size_t kStreamIndex = 0;
// The default KID, KEY and IV for key rotation are all 0s.
// They are placeholders and are not really being used to encrypt data.
const uint8_t kKeyRotationDefaultKeyId[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
const uint8_t kKeyRotationDefaultKey[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
const uint8_t kKeyRotationDefaultIv[] = {
0, 0, 0, 0, 0, 0, 0, 0,
};
std::string GetStreamLabelForEncryption(
const StreamInfo& stream_info,
const std::function<std::string(
const EncryptionParams::EncryptedStreamAttributes& stream_attributes)>&
stream_label_func) {
EncryptionParams::EncryptedStreamAttributes stream_attributes;
if (stream_info.stream_type() == kStreamAudio) {
stream_attributes.stream_type =
EncryptionParams::EncryptedStreamAttributes::kAudio;
} else if (stream_info.stream_type() == kStreamVideo) {
const VideoStreamInfo& video_stream_info =
static_cast<const VideoStreamInfo&>(stream_info);
stream_attributes.stream_type =
EncryptionParams::EncryptedStreamAttributes::kVideo;
stream_attributes.oneof.video.width = video_stream_info.width();
stream_attributes.oneof.video.height = video_stream_info.height();
}
return stream_label_func(stream_attributes);
}
bool IsPatternEncryptionScheme(FourCC protection_scheme) {
return protection_scheme == kAppleSampleAesProtectionScheme ||
protection_scheme == FOURCC_cbcs || protection_scheme == FOURCC_cens;
}
void FillPsshGenerators(
const EncryptionParams& encryption_params,
std::vector<std::unique_ptr<PsshGenerator>>* pssh_generators,
std::vector<std::vector<uint8_t>>* no_pssh_systems) {
if (has_flag(encryption_params.protection_systems,
ProtectionSystem::kCommon)) {
pssh_generators->emplace_back(new CommonPsshGenerator());
}
if (has_flag(encryption_params.protection_systems,
ProtectionSystem::kPlayReady)) {
pssh_generators->emplace_back(new PlayReadyPsshGenerator(
encryption_params.playready_extra_header_data,
static_cast<FourCC>(encryption_params.protection_scheme)));
}
if (has_flag(encryption_params.protection_systems,
ProtectionSystem::kWidevine)) {
pssh_generators->emplace_back(new WidevinePsshGenerator(
static_cast<FourCC>(encryption_params.protection_scheme)));
}
if (has_flag(encryption_params.protection_systems,
ProtectionSystem::kFairPlay)) {
no_pssh_systems->emplace_back(std::begin(kFairPlaySystemId),
std::end(kFairPlaySystemId));
}
// We only support Marlin Adaptive Streaming Specification Simple Profile
// with Implicit Content ID Mapping, which does not need a PSSH. Marlin
// specific PSSH with Explicit Content ID Mapping is not generated.
if (has_flag(encryption_params.protection_systems,
ProtectionSystem::kMarlin)) {
no_pssh_systems->emplace_back(std::begin(kMarlinSystemId),
std::end(kMarlinSystemId));
}
if (pssh_generators->empty() && no_pssh_systems->empty() &&
(encryption_params.key_provider != KeyProvider::kRawKey ||
encryption_params.raw_key.pssh.empty())) {
pssh_generators->emplace_back(new CommonPsshGenerator());
}
}
void AddProtectionSystemIfNotExist(
const ProtectionSystemSpecificInfo& pssh_info,
EncryptionConfig* encryption_config) {
for (const auto& info : encryption_config->key_system_info) {
if (info.system_id == pssh_info.system_id)
return;
}
encryption_config->key_system_info.push_back(pssh_info);
}
Status FillProtectionSystemInfo(const EncryptionParams& encryption_params,
const EncryptionKey& encryption_key,
EncryptionConfig* encryption_config) {
// If generating dummy keys for key rotation, don't generate PSSH info.
if (encryption_key.key_ids.empty())
return Status::OK;
std::vector<std::unique_ptr<PsshGenerator>> pssh_generators;
std::vector<std::vector<uint8_t>> no_pssh_systems;
FillPsshGenerators(encryption_params, &pssh_generators, &no_pssh_systems);
encryption_config->key_system_info = encryption_key.key_system_info;
for (const auto& pssh_generator : pssh_generators) {
const bool support_multiple_keys = pssh_generator->SupportMultipleKeys();
if (support_multiple_keys) {
ProtectionSystemSpecificInfo info;
RETURN_IF_ERROR(pssh_generator->GeneratePsshFromKeyIds(
encryption_key.key_ids, &info));
AddProtectionSystemIfNotExist(info, encryption_config);
} else {
ProtectionSystemSpecificInfo info;
RETURN_IF_ERROR(pssh_generator->GeneratePsshFromKeyIdAndKey(
encryption_key.key_id, encryption_key.key, &info));
AddProtectionSystemIfNotExist(info, encryption_config);
}
}
for (const auto& no_pssh_system : no_pssh_systems) {
ProtectionSystemSpecificInfo info;
info.system_id = no_pssh_system;
AddProtectionSystemIfNotExist(info, encryption_config);
}
return Status::OK;
}
} // namespace
EncryptionHandler::EncryptionHandler(const EncryptionParams& encryption_params,
KeySource* key_source)
: encryption_params_(encryption_params),
protection_scheme_(
static_cast<FourCC>(encryption_params.protection_scheme)),
key_source_(key_source),
subsample_generator_(
new SubsampleGenerator(encryption_params.vp9_subsample_encryption)),
encryptor_factory_(new AesEncryptorFactory) {}
EncryptionHandler::~EncryptionHandler() = default;
Status EncryptionHandler::InitializeInternal() {
if (!encryption_params_.stream_label_func) {
return Status(error::INVALID_ARGUMENT, "Stream label function not set.");
}
if (num_input_streams() != 1 || next_output_stream_index() != 1) {
return Status(error::INVALID_ARGUMENT,
"Expects exactly one input and output.");
}
return Status::OK;
}
Status EncryptionHandler::Process(std::unique_ptr<StreamData> stream_data) {
switch (stream_data->stream_data_type) {
case StreamDataType::kStreamInfo:
return ProcessStreamInfo(*stream_data->stream_info);
case StreamDataType::kSegmentInfo: {
std::shared_ptr<SegmentInfo> segment_info(new SegmentInfo(
*stream_data->segment_info));
segment_info->is_encrypted = remaining_clear_lead_ <= 0;
const bool key_rotation_enabled = crypto_period_duration_ != 0;
if (key_rotation_enabled)
segment_info->key_rotation_encryption_config = encryption_config_;
if (!segment_info->is_subsegment) {
if (key_rotation_enabled)
check_new_crypto_period_ = true;
if (remaining_clear_lead_ > 0)
remaining_clear_lead_ -= segment_info->duration;
}
return DispatchSegmentInfo(kStreamIndex, segment_info);
}
case StreamDataType::kMediaSample:
return ProcessMediaSample(std::move(stream_data->media_sample));
default:
VLOG(3) << "Stream data type "
<< static_cast<int>(stream_data->stream_data_type) << " ignored.";
return Dispatch(std::move(stream_data));
}
}
Status EncryptionHandler::ProcessStreamInfo(const StreamInfo& clear_info) {
if (clear_info.is_encrypted()) {
return Status(error::INVALID_ARGUMENT,
"Input stream is already encrypted.");
}
DCHECK_NE(kStreamUnknown, clear_info.stream_type());
DCHECK_NE(kStreamText, clear_info.stream_type());
std::shared_ptr<StreamInfo> stream_info = clear_info.Clone();
RETURN_IF_ERROR(
subsample_generator_->Initialize(protection_scheme_, *stream_info));
remaining_clear_lead_ =
encryption_params_.clear_lead_in_seconds * stream_info->time_scale();
crypto_period_duration_ =
encryption_params_.crypto_period_duration_in_seconds *
stream_info->time_scale();
codec_ = stream_info->codec();
stream_label_ = GetStreamLabelForEncryption(
*stream_info, encryption_params_.stream_label_func);
SetupProtectionPattern(stream_info->stream_type());
EncryptionKey encryption_key;
const bool key_rotation_enabled = crypto_period_duration_ != 0;
if (key_rotation_enabled) {
check_new_crypto_period_ = true;
// Setup dummy key id, key and iv to signal encryption for key rotation.
encryption_key.key_id.assign(std::begin(kKeyRotationDefaultKeyId),
std::end(kKeyRotationDefaultKeyId));
encryption_key.key.assign(std::begin(kKeyRotationDefaultKey),
std::end(kKeyRotationDefaultKey));
encryption_key.iv.assign(std::begin(kKeyRotationDefaultIv),
std::end(kKeyRotationDefaultIv));
} else {
RETURN_IF_ERROR(key_source_->GetKey(stream_label_, &encryption_key));
}
if (!CreateEncryptor(encryption_key))
return Status(error::ENCRYPTION_FAILURE, "Failed to create encryptor");
stream_info->set_is_encrypted(true);
stream_info->set_has_clear_lead(encryption_params_.clear_lead_in_seconds > 0);
stream_info->set_encryption_config(*encryption_config_);
return DispatchStreamInfo(kStreamIndex, stream_info);
}
Status EncryptionHandler::ProcessMediaSample(
std::shared_ptr<const MediaSample> clear_sample) {
DCHECK(clear_sample);
// Process the frame even if the frame is not encrypted as the next
// (encrypted) frame may be dependent on this clear frame.
std::vector<SubsampleEntry> subsamples;
RETURN_IF_ERROR(subsample_generator_->GenerateSubsamples(
clear_sample->data(), clear_sample->data_size(), &subsamples));
// Need to setup the encryptor for new segments even if this segment does not
// need to be encrypted, so we can signal encryption metadata earlier to
// allows clients to prefetch the keys.
if (check_new_crypto_period_) {
// |dts| can be negative, e.g. after EditList adjustments. Normalized to 0
// in that case.
const int64_t dts = std::max(clear_sample->dts(), static_cast<int64_t>(0));
const int64_t current_crypto_period_index = dts / crypto_period_duration_;
const int32_t crypto_period_duration_in_seconds = static_cast<int32_t>(
encryption_params_.crypto_period_duration_in_seconds);
if (current_crypto_period_index != prev_crypto_period_index_) {
EncryptionKey encryption_key;
RETURN_IF_ERROR(key_source_->GetCryptoPeriodKey(
current_crypto_period_index, crypto_period_duration_in_seconds,
stream_label_, &encryption_key));
if (!CreateEncryptor(encryption_key))
return Status(error::ENCRYPTION_FAILURE, "Failed to create encryptor");
prev_crypto_period_index_ = current_crypto_period_index;
}
check_new_crypto_period_ = false;
}
// Since there is no encryption needed right now, send the clear copy
// downstream so we can save the costs of copying it.
if (remaining_clear_lead_ > 0) {
return DispatchMediaSample(kStreamIndex, std::move(clear_sample));
}
size_t ciphertext_size =
encryptor_->RequiredOutputSize(clear_sample->data_size());
std::shared_ptr<uint8_t> cipher_sample_data(new uint8_t[ciphertext_size],
std::default_delete<uint8_t[]>());
const uint8_t* source = clear_sample->data();
uint8_t* dest = cipher_sample_data.get();
if (!subsamples.empty()) {
size_t total_size = 0;
for (const SubsampleEntry& subsample : subsamples) {
if (subsample.clear_bytes > 0) {
// clear_bytes is the number of bytes to leave in the clear
memcpy(dest, source, subsample.clear_bytes);
source += subsample.clear_bytes;
dest += subsample.clear_bytes;
total_size += subsample.clear_bytes;
}
if (subsample.cipher_bytes > 0) {
// cipher_bytes is the number of bytes we want to encrypt
EncryptBytes(source, subsample.cipher_bytes, dest, ciphertext_size);
source += subsample.cipher_bytes;
dest += subsample.cipher_bytes;
total_size += subsample.cipher_bytes;
}
}
DCHECK_EQ(total_size, clear_sample->data_size());
} else {
EncryptBytes(source, clear_sample->data_size(), dest, ciphertext_size);
}
std::shared_ptr<MediaSample> cipher_sample(clear_sample->Clone());
cipher_sample->TransferData(std::move(cipher_sample_data),
clear_sample->data_size());
// Finish initializing the sample before sending it downstream. We must
// wait until now to finish the initialization as we will lose access to
// |decrypt_config| once we set it.
cipher_sample->set_is_encrypted(true);
std::unique_ptr<DecryptConfig> decrypt_config(new DecryptConfig(
encryption_config_->key_id, encryptor_->iv(), subsamples,
protection_scheme_, crypt_byte_block_, skip_byte_block_));
cipher_sample->set_decrypt_config(std::move(decrypt_config));
encryptor_->UpdateIv();
return DispatchMediaSample(kStreamIndex, std::move(cipher_sample));
}
void EncryptionHandler::SetupProtectionPattern(StreamType stream_type) {
if (stream_type == kStreamVideo &&
IsPatternEncryptionScheme(protection_scheme_)) {
crypt_byte_block_ = encryption_params_.crypt_byte_block;
skip_byte_block_ = encryption_params_.skip_byte_block;
} else {
// Audio stream in pattern encryption scheme does not use pattern; it uses
// whole-block full sample encryption instead. Non-pattern encryption does
// not have pattern.
crypt_byte_block_ = 0u;
skip_byte_block_ = 0u;
}
}
bool EncryptionHandler::CreateEncryptor(const EncryptionKey& encryption_key) {
std::unique_ptr<AesCryptor> encryptor = encryptor_factory_->CreateEncryptor(
protection_scheme_, crypt_byte_block_, skip_byte_block_, codec_,
encryption_key.key, encryption_key.iv);
if (!encryptor)
return false;
encryptor_ = std::move(encryptor);
encryption_config_.reset(new EncryptionConfig);
encryption_config_->protection_scheme = protection_scheme_;
encryption_config_->crypt_byte_block = crypt_byte_block_;
encryption_config_->skip_byte_block = skip_byte_block_;
const std::vector<uint8_t>& iv = encryptor_->iv();
if (encryptor_->use_constant_iv()) {
encryption_config_->per_sample_iv_size = 0;
encryption_config_->constant_iv = iv;
} else {
2017-03-22 16:57:18 +00:00
encryption_config_->per_sample_iv_size = static_cast<uint8_t>(iv.size());
}
encryption_config_->key_id = encryption_key.key_id;
const auto status = FillProtectionSystemInfo(
encryption_params_, encryption_key, encryption_config_.get());
return status.ok();
}
void EncryptionHandler::EncryptBytes(const uint8_t* source,
size_t source_size,
uint8_t* dest,
size_t dest_size) {
DCHECK(source);
DCHECK(dest);
DCHECK(encryptor_);
CHECK(encryptor_->Crypt(source, source_size, dest, &dest_size));
}
void EncryptionHandler::InjectSubsampleGeneratorForTesting(
std::unique_ptr<SubsampleGenerator> generator) {
subsample_generator_ = std::move(generator);
}
void EncryptionHandler::InjectEncryptorFactoryForTesting(
std::unique_ptr<AesEncryptorFactory> encryptor_factory) {
encryptor_factory_ = std::move(encryptor_factory);
}
} // namespace media
} // namespace shaka