shaka-packager/packager/file/udp_file.cc

299 lines
7.7 KiB
C++
Raw Normal View History

// Copyright 2014 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
#include "packager/file/udp_file.h"
#if defined(OS_WIN)
#include <windows.h>
#include <ws2tcpip.h>
#define close closesocket
#else
#include <arpa/inet.h>
#include <errno.h>
#include <strings.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <unistd.h>
#define INVALID_SOCKET -1
// IP_MULTICAST_ALL has been supported since kernel version 2.6.31 but we may be
// building on a machine that is older than that.
#ifndef IP_MULTICAST_ALL
#define IP_MULTICAST_ALL 49
#endif
#endif // defined(OS_WIN)
#include <limits>
#include "packager/base/logging.h"
#include "packager/file/udp_options.h"
namespace shaka {
namespace {
bool IsIpv4MulticastAddress(const struct in_addr& addr) {
return (ntohl(addr.s_addr) & 0xf0000000) == 0xe0000000;
}
} // anonymous namespace
UdpFile::UdpFile(const char* file_name)
: File(file_name), socket_(INVALID_SOCKET) {}
UdpFile::~UdpFile() {}
bool UdpFile::Close() {
if (socket_ != INVALID_SOCKET) {
close(socket_);
socket_ = INVALID_SOCKET;
}
delete this;
return true;
}
int64_t UdpFile::Read(void* buffer, uint64_t length) {
DCHECK(buffer);
DCHECK_GE(length, 65535u)
<< "Buffer may be too small to read entire datagram.";
if (socket_ == INVALID_SOCKET)
return -1;
int64_t result;
do {
result =
recvfrom(socket_, reinterpret_cast<char*>(buffer), length, 0, NULL, 0);
} while ((result == -1) && (errno == EINTR));
return result;
}
int64_t UdpFile::Write(const void* buffer, uint64_t length) {
NOTIMPLEMENTED();
return -1;
}
int64_t UdpFile::Size() {
if (socket_ == INVALID_SOCKET)
return -1;
return std::numeric_limits<int64_t>::max();
}
bool UdpFile::Flush() {
NOTIMPLEMENTED();
return false;
}
bool UdpFile::Seek(uint64_t position) {
NOTIMPLEMENTED();
return false;
}
bool UdpFile::Tell(uint64_t* position) {
NOTIMPLEMENTED();
return false;
}
#if defined(OS_WIN)
class LibWinsockInitializer {
public:
LibWinsockInitializer() {
WSADATA wsa_data;
error_ = WSAStartup(MAKEWORD(2, 2), &wsa_data);
}
~LibWinsockInitializer() {
if (error_ == 0)
WSACleanup();
}
int error() const { return error_; }
private:
int error_;
};
#endif // defined(OS_WIN)
class ScopedSocket {
public:
explicit ScopedSocket(SOCKET sock_fd) : sock_fd_(sock_fd) {}
~ScopedSocket() {
if (sock_fd_ != INVALID_SOCKET)
close(sock_fd_);
}
SOCKET get() { return sock_fd_; }
SOCKET release() {
SOCKET socket = sock_fd_;
sock_fd_ = INVALID_SOCKET;
return socket;
}
private:
SOCKET sock_fd_;
DISALLOW_COPY_AND_ASSIGN(ScopedSocket);
};
bool UdpFile::Open() {
#if defined(OS_WIN)
static LibWinsockInitializer lib_winsock_initializer;
if (lib_winsock_initializer.error() != 0) {
LOG(ERROR) << "Winsock start up failed with error "
<< lib_winsock_initializer.error();
return false;
}
#endif // defined(OS_WIN)
DCHECK_EQ(INVALID_SOCKET, socket_);
std::unique_ptr<UdpOptions> options =
UdpOptions::ParseFromString(file_name());
if (!options)
return false;
ScopedSocket new_socket(socket(AF_INET, SOCK_DGRAM, 0));
if (new_socket.get() == INVALID_SOCKET) {
LOG(ERROR) << "Could not allocate socket.";
return false;
}
struct in_addr local_in_addr = {0};
if (inet_pton(AF_INET, options->address().c_str(), &local_in_addr) != 1) {
LOG(ERROR) << "Malformed IPv4 address " << options->address();
return false;
}
struct sockaddr_in local_sock_addr = {0};
// TODO(kqyang): Support IPv6.
local_sock_addr.sin_family = AF_INET;
local_sock_addr.sin_port = htons(options->port());
const bool is_multicast = IsIpv4MulticastAddress(local_in_addr);
if (is_multicast) {
local_sock_addr.sin_addr.s_addr = htonl(INADDR_ANY);
} else {
local_sock_addr.sin_addr = local_in_addr;
}
if (options->reuse()) {
const int optval = 1;
if (setsockopt(new_socket.get(), SOL_SOCKET, SO_REUSEADDR,
reinterpret_cast<const char*>(&optval),
sizeof(optval)) < 0) {
LOG(ERROR)
<< "Could not apply the SO_REUSEADDR property to the UDP socket";
return false;
}
}
if (bind(new_socket.get(),
reinterpret_cast<struct sockaddr*>(&local_sock_addr),
sizeof(local_sock_addr))) {
LOG(ERROR) << "Could not bind UDP socket";
return false;
}
if (is_multicast) {
if (options->is_source_specific_multicast()) {
struct ip_mreq_source source_multicast_group;
source_multicast_group.imr_multiaddr = local_in_addr;
if (inet_pton(AF_INET,
options->interface_address().c_str(),
&source_multicast_group.imr_interface) != 1) {
LOG(ERROR) << "Malformed IPv4 interface address "
<< options->interface_address();
return false;
}
if (inet_pton(AF_INET,
options->source_address().c_str(),
&source_multicast_group.imr_sourceaddr) != 1) {
LOG(ERROR) << "Malformed IPv4 source specific multicast address "
<< options->source_address();
return false;
}
if (setsockopt(new_socket.get(),
IPPROTO_IP,
IP_ADD_SOURCE_MEMBERSHIP,
reinterpret_cast<const char*>(&source_multicast_group),
sizeof(source_multicast_group)) < 0) {
LOG(ERROR) << "Failed to join multicast group.";
return false;
}
} else {
// this is a v2 join without a specific source.
struct ip_mreq multicast_group;
multicast_group.imr_multiaddr = local_in_addr;
if (inet_pton(AF_INET, options->interface_address().c_str(),
&multicast_group.imr_interface) != 1) {
LOG(ERROR) << "Malformed IPv4 interface address "
<< options->interface_address();
return false;
}
if (setsockopt(new_socket.get(), IPPROTO_IP, IP_ADD_MEMBERSHIP,
reinterpret_cast<const char*>(&multicast_group),
sizeof(multicast_group)) < 0) {
LOG(ERROR) << "Failed to join multicast group.";
return false;
}
}
#if defined(__linux__)
// Disable IP_MULTICAST_ALL to avoid interference caused when two sockets
// are bound to the same port but joined to different multicast groups.
const int optval_zero = 0;
if (setsockopt(new_socket.get(), IPPROTO_IP, IP_MULTICAST_ALL,
reinterpret_cast<const char*>(&optval_zero),
sizeof(optval_zero)) < 0 &&
errno != ENOPROTOOPT) {
LOG(ERROR) << "Failed to disable IP_MULTICAST_ALL option.";
return false;
}
#endif // #if defined(__linux__)
}
// Set timeout if needed.
if (options->timeout_us() != 0) {
struct timeval tv;
tv.tv_sec = options->timeout_us() / 1000000;
tv.tv_usec = options->timeout_us() % 1000000;
if (setsockopt(new_socket.get(), SOL_SOCKET, SO_RCVTIMEO,
reinterpret_cast<const char*>(&tv), sizeof(tv)) < 0) {
LOG(ERROR) << "Failed to set socket timeout.";
return false;
}
}
if (options->buffer_size() > 0) {
const int receive_buffer_size = options->buffer_size();
if (setsockopt(new_socket.get(), SOL_SOCKET, SO_RCVBUF,
reinterpret_cast<const char*>(&receive_buffer_size),
sizeof(receive_buffer_size)) < 0) {
LOG(ERROR) << "Failed to set the maximum receive buffer size: "
<< strerror(errno);
return false;
}
}
socket_ = new_socket.release();
return true;
}
} // namespace shaka