345 lines
12 KiB
C++
345 lines
12 KiB
C++
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
||
|
// Use of this source code is governed by a BSD-style license that can be
|
||
|
// found in the LICENSE file.
|
||
|
|
||
|
#include "base/time/time.h"
|
||
|
|
||
|
#include <sys/time.h>
|
||
|
#include <time.h>
|
||
|
#if defined(OS_ANDROID)
|
||
|
#include <time64.h>
|
||
|
#endif
|
||
|
|
||
|
#include <limits>
|
||
|
|
||
|
#include "base/basictypes.h"
|
||
|
#include "base/logging.h"
|
||
|
|
||
|
#if defined(OS_ANDROID)
|
||
|
#include "base/os_compat_android.h"
|
||
|
#elif defined(OS_NACL)
|
||
|
#include "base/os_compat_nacl.h"
|
||
|
#endif
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
// Define a system-specific SysTime that wraps either to a time_t or
|
||
|
// a time64_t depending on the host system, and associated convertion.
|
||
|
// See crbug.com/162007
|
||
|
#if defined(OS_ANDROID)
|
||
|
typedef time64_t SysTime;
|
||
|
|
||
|
SysTime SysTimeFromTimeStruct(struct tm* timestruct, bool is_local) {
|
||
|
if (is_local)
|
||
|
return mktime64(timestruct);
|
||
|
else
|
||
|
return timegm64(timestruct);
|
||
|
}
|
||
|
|
||
|
void SysTimeToTimeStruct(SysTime t, struct tm* timestruct, bool is_local) {
|
||
|
if (is_local)
|
||
|
localtime64_r(&t, timestruct);
|
||
|
else
|
||
|
gmtime64_r(&t, timestruct);
|
||
|
}
|
||
|
|
||
|
#else // OS_ANDROID
|
||
|
typedef time_t SysTime;
|
||
|
|
||
|
SysTime SysTimeFromTimeStruct(struct tm* timestruct, bool is_local) {
|
||
|
if (is_local)
|
||
|
return mktime(timestruct);
|
||
|
else
|
||
|
return timegm(timestruct);
|
||
|
}
|
||
|
|
||
|
void SysTimeToTimeStruct(SysTime t, struct tm* timestruct, bool is_local) {
|
||
|
if (is_local)
|
||
|
localtime_r(&t, timestruct);
|
||
|
else
|
||
|
gmtime_r(&t, timestruct);
|
||
|
}
|
||
|
#endif // OS_ANDROID
|
||
|
|
||
|
#if !defined(OS_MACOSX)
|
||
|
// Helper function to get results from clock_gettime() as TimeTicks object.
|
||
|
// Minimum requirement is MONOTONIC_CLOCK to be supported on the system.
|
||
|
// FreeBSD 6 has CLOCK_MONOTONIC but defines _POSIX_MONOTONIC_CLOCK to -1.
|
||
|
#if (defined(OS_POSIX) && \
|
||
|
defined(_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0) || \
|
||
|
defined(OS_BSD) || defined(OS_ANDROID)
|
||
|
base::TimeTicks ClockNow(clockid_t clk_id) {
|
||
|
uint64_t absolute_micro;
|
||
|
|
||
|
struct timespec ts;
|
||
|
if (clock_gettime(clk_id, &ts) != 0) {
|
||
|
NOTREACHED() << "clock_gettime(" << clk_id << ") failed.";
|
||
|
return base::TimeTicks();
|
||
|
}
|
||
|
|
||
|
absolute_micro =
|
||
|
(static_cast<int64>(ts.tv_sec) * base::Time::kMicrosecondsPerSecond) +
|
||
|
(static_cast<int64>(ts.tv_nsec) / base::Time::kNanosecondsPerMicrosecond);
|
||
|
|
||
|
return base::TimeTicks::FromInternalValue(absolute_micro);
|
||
|
}
|
||
|
#else // _POSIX_MONOTONIC_CLOCK
|
||
|
#error No usable tick clock function on this platform.
|
||
|
#endif // _POSIX_MONOTONIC_CLOCK
|
||
|
#endif // !defined(OS_MACOSX)
|
||
|
|
||
|
} // namespace
|
||
|
|
||
|
namespace base {
|
||
|
|
||
|
struct timespec TimeDelta::ToTimeSpec() const {
|
||
|
int64 microseconds = InMicroseconds();
|
||
|
time_t seconds = 0;
|
||
|
if (microseconds >= Time::kMicrosecondsPerSecond) {
|
||
|
seconds = InSeconds();
|
||
|
microseconds -= seconds * Time::kMicrosecondsPerSecond;
|
||
|
}
|
||
|
struct timespec result =
|
||
|
{seconds,
|
||
|
static_cast<long>(microseconds * Time::kNanosecondsPerMicrosecond)};
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
#if !defined(OS_MACOSX)
|
||
|
// The Time routines in this file use standard POSIX routines, or almost-
|
||
|
// standard routines in the case of timegm. We need to use a Mach-specific
|
||
|
// function for TimeTicks::Now() on Mac OS X.
|
||
|
|
||
|
// Time -----------------------------------------------------------------------
|
||
|
|
||
|
// Windows uses a Gregorian epoch of 1601. We need to match this internally
|
||
|
// so that our time representations match across all platforms. See bug 14734.
|
||
|
// irb(main):010:0> Time.at(0).getutc()
|
||
|
// => Thu Jan 01 00:00:00 UTC 1970
|
||
|
// irb(main):011:0> Time.at(-11644473600).getutc()
|
||
|
// => Mon Jan 01 00:00:00 UTC 1601
|
||
|
static const int64 kWindowsEpochDeltaSeconds = GG_INT64_C(11644473600);
|
||
|
static const int64 kWindowsEpochDeltaMilliseconds =
|
||
|
kWindowsEpochDeltaSeconds * Time::kMillisecondsPerSecond;
|
||
|
|
||
|
// static
|
||
|
const int64 Time::kWindowsEpochDeltaMicroseconds =
|
||
|
kWindowsEpochDeltaSeconds * Time::kMicrosecondsPerSecond;
|
||
|
|
||
|
// Some functions in time.cc use time_t directly, so we provide an offset
|
||
|
// to convert from time_t (Unix epoch) and internal (Windows epoch).
|
||
|
// static
|
||
|
const int64 Time::kTimeTToMicrosecondsOffset = kWindowsEpochDeltaMicroseconds;
|
||
|
|
||
|
// static
|
||
|
Time Time::Now() {
|
||
|
struct timeval tv;
|
||
|
struct timezone tz = { 0, 0 }; // UTC
|
||
|
if (gettimeofday(&tv, &tz) != 0) {
|
||
|
DCHECK(0) << "Could not determine time of day";
|
||
|
LOG_ERRNO(ERROR) << "Call to gettimeofday failed.";
|
||
|
// Return null instead of uninitialized |tv| value, which contains random
|
||
|
// garbage data. This may result in the crash seen in crbug.com/147570.
|
||
|
return Time();
|
||
|
}
|
||
|
// Combine seconds and microseconds in a 64-bit field containing microseconds
|
||
|
// since the epoch. That's enough for nearly 600 centuries. Adjust from
|
||
|
// Unix (1970) to Windows (1601) epoch.
|
||
|
return Time((tv.tv_sec * kMicrosecondsPerSecond + tv.tv_usec) +
|
||
|
kWindowsEpochDeltaMicroseconds);
|
||
|
}
|
||
|
|
||
|
// static
|
||
|
Time Time::NowFromSystemTime() {
|
||
|
// Just use Now() because Now() returns the system time.
|
||
|
return Now();
|
||
|
}
|
||
|
|
||
|
void Time::Explode(bool is_local, Exploded* exploded) const {
|
||
|
// Time stores times with microsecond resolution, but Exploded only carries
|
||
|
// millisecond resolution, so begin by being lossy. Adjust from Windows
|
||
|
// epoch (1601) to Unix epoch (1970);
|
||
|
int64 microseconds = us_ - kWindowsEpochDeltaMicroseconds;
|
||
|
// The following values are all rounded towards -infinity.
|
||
|
int64 milliseconds; // Milliseconds since epoch.
|
||
|
SysTime seconds; // Seconds since epoch.
|
||
|
int millisecond; // Exploded millisecond value (0-999).
|
||
|
if (microseconds >= 0) {
|
||
|
// Rounding towards -infinity <=> rounding towards 0, in this case.
|
||
|
milliseconds = microseconds / kMicrosecondsPerMillisecond;
|
||
|
seconds = milliseconds / kMillisecondsPerSecond;
|
||
|
millisecond = milliseconds % kMillisecondsPerSecond;
|
||
|
} else {
|
||
|
// Round these *down* (towards -infinity).
|
||
|
milliseconds = (microseconds - kMicrosecondsPerMillisecond + 1) /
|
||
|
kMicrosecondsPerMillisecond;
|
||
|
seconds = (milliseconds - kMillisecondsPerSecond + 1) /
|
||
|
kMillisecondsPerSecond;
|
||
|
// Make this nonnegative (and between 0 and 999 inclusive).
|
||
|
millisecond = milliseconds % kMillisecondsPerSecond;
|
||
|
if (millisecond < 0)
|
||
|
millisecond += kMillisecondsPerSecond;
|
||
|
}
|
||
|
|
||
|
struct tm timestruct;
|
||
|
SysTimeToTimeStruct(seconds, ×truct, is_local);
|
||
|
|
||
|
exploded->year = timestruct.tm_year + 1900;
|
||
|
exploded->month = timestruct.tm_mon + 1;
|
||
|
exploded->day_of_week = timestruct.tm_wday;
|
||
|
exploded->day_of_month = timestruct.tm_mday;
|
||
|
exploded->hour = timestruct.tm_hour;
|
||
|
exploded->minute = timestruct.tm_min;
|
||
|
exploded->second = timestruct.tm_sec;
|
||
|
exploded->millisecond = millisecond;
|
||
|
}
|
||
|
|
||
|
// static
|
||
|
Time Time::FromExploded(bool is_local, const Exploded& exploded) {
|
||
|
struct tm timestruct;
|
||
|
timestruct.tm_sec = exploded.second;
|
||
|
timestruct.tm_min = exploded.minute;
|
||
|
timestruct.tm_hour = exploded.hour;
|
||
|
timestruct.tm_mday = exploded.day_of_month;
|
||
|
timestruct.tm_mon = exploded.month - 1;
|
||
|
timestruct.tm_year = exploded.year - 1900;
|
||
|
timestruct.tm_wday = exploded.day_of_week; // mktime/timegm ignore this
|
||
|
timestruct.tm_yday = 0; // mktime/timegm ignore this
|
||
|
timestruct.tm_isdst = -1; // attempt to figure it out
|
||
|
#if !defined(OS_NACL) && !defined(OS_SOLARIS)
|
||
|
timestruct.tm_gmtoff = 0; // not a POSIX field, so mktime/timegm ignore
|
||
|
timestruct.tm_zone = NULL; // not a POSIX field, so mktime/timegm ignore
|
||
|
#endif
|
||
|
|
||
|
SysTime seconds = SysTimeFromTimeStruct(×truct, is_local);
|
||
|
|
||
|
int64 milliseconds;
|
||
|
// Handle overflow. Clamping the range to what mktime and timegm might
|
||
|
// return is the best that can be done here. It's not ideal, but it's better
|
||
|
// than failing here or ignoring the overflow case and treating each time
|
||
|
// overflow as one second prior to the epoch.
|
||
|
if (seconds == -1 &&
|
||
|
(exploded.year < 1969 || exploded.year > 1970)) {
|
||
|
// If exploded.year is 1969 or 1970, take -1 as correct, with the
|
||
|
// time indicating 1 second prior to the epoch. (1970 is allowed to handle
|
||
|
// time zone and DST offsets.) Otherwise, return the most future or past
|
||
|
// time representable. Assumes the time_t epoch is 1970-01-01 00:00:00 UTC.
|
||
|
//
|
||
|
// The minimum and maximum representible times that mktime and timegm could
|
||
|
// return are used here instead of values outside that range to allow for
|
||
|
// proper round-tripping between exploded and counter-type time
|
||
|
// representations in the presence of possible truncation to time_t by
|
||
|
// division and use with other functions that accept time_t.
|
||
|
//
|
||
|
// When representing the most distant time in the future, add in an extra
|
||
|
// 999ms to avoid the time being less than any other possible value that
|
||
|
// this function can return.
|
||
|
if (exploded.year < 1969) {
|
||
|
CHECK(sizeof(SysTime) < sizeof(int64)) << "integer overflow";
|
||
|
milliseconds = std::numeric_limits<SysTime>::min();
|
||
|
milliseconds *= kMillisecondsPerSecond;
|
||
|
} else {
|
||
|
CHECK(sizeof(SysTime) < sizeof(int64)) << "integer overflow";
|
||
|
milliseconds = std::numeric_limits<SysTime>::max();
|
||
|
milliseconds *= kMillisecondsPerSecond;
|
||
|
milliseconds += (kMillisecondsPerSecond - 1);
|
||
|
}
|
||
|
} else {
|
||
|
milliseconds = seconds * kMillisecondsPerSecond + exploded.millisecond;
|
||
|
}
|
||
|
|
||
|
// Adjust from Unix (1970) to Windows (1601) epoch.
|
||
|
return Time((milliseconds * kMicrosecondsPerMillisecond) +
|
||
|
kWindowsEpochDeltaMicroseconds);
|
||
|
}
|
||
|
|
||
|
// TimeTicks ------------------------------------------------------------------
|
||
|
// static
|
||
|
TimeTicks TimeTicks::Now() {
|
||
|
return ClockNow(CLOCK_MONOTONIC);
|
||
|
}
|
||
|
|
||
|
// static
|
||
|
TimeTicks TimeTicks::HighResNow() {
|
||
|
return Now();
|
||
|
}
|
||
|
|
||
|
// static
|
||
|
TimeTicks TimeTicks::ThreadNow() {
|
||
|
#if defined(_POSIX_THREAD_CPUTIME) && (_POSIX_THREAD_CPUTIME >= 0)
|
||
|
return ClockNow(CLOCK_THREAD_CPUTIME_ID);
|
||
|
#else
|
||
|
NOTREACHED();
|
||
|
return TimeTicks();
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
#if defined(OS_CHROMEOS)
|
||
|
// Force definition of the system trace clock; it is a chromeos-only api
|
||
|
// at the moment and surfacing it in the right place requires mucking
|
||
|
// with glibc et al.
|
||
|
#define CLOCK_SYSTEM_TRACE 11
|
||
|
|
||
|
// static
|
||
|
TimeTicks TimeTicks::NowFromSystemTraceTime() {
|
||
|
uint64_t absolute_micro;
|
||
|
|
||
|
struct timespec ts;
|
||
|
if (clock_gettime(CLOCK_SYSTEM_TRACE, &ts) != 0) {
|
||
|
// NB: fall-back for a chrome os build running on linux
|
||
|
return HighResNow();
|
||
|
}
|
||
|
|
||
|
absolute_micro =
|
||
|
(static_cast<int64>(ts.tv_sec) * Time::kMicrosecondsPerSecond) +
|
||
|
(static_cast<int64>(ts.tv_nsec) / Time::kNanosecondsPerMicrosecond);
|
||
|
|
||
|
return TimeTicks(absolute_micro);
|
||
|
}
|
||
|
|
||
|
#else // !defined(OS_CHROMEOS)
|
||
|
|
||
|
// static
|
||
|
TimeTicks TimeTicks::NowFromSystemTraceTime() {
|
||
|
return HighResNow();
|
||
|
}
|
||
|
|
||
|
#endif // defined(OS_CHROMEOS)
|
||
|
|
||
|
#endif // !OS_MACOSX
|
||
|
|
||
|
// static
|
||
|
Time Time::FromTimeVal(struct timeval t) {
|
||
|
DCHECK_LT(t.tv_usec, static_cast<int>(Time::kMicrosecondsPerSecond));
|
||
|
DCHECK_GE(t.tv_usec, 0);
|
||
|
if (t.tv_usec == 0 && t.tv_sec == 0)
|
||
|
return Time();
|
||
|
if (t.tv_usec == static_cast<suseconds_t>(Time::kMicrosecondsPerSecond) - 1 &&
|
||
|
t.tv_sec == std::numeric_limits<time_t>::max())
|
||
|
return Max();
|
||
|
return Time(
|
||
|
(static_cast<int64>(t.tv_sec) * Time::kMicrosecondsPerSecond) +
|
||
|
t.tv_usec +
|
||
|
kTimeTToMicrosecondsOffset);
|
||
|
}
|
||
|
|
||
|
struct timeval Time::ToTimeVal() const {
|
||
|
struct timeval result;
|
||
|
if (is_null()) {
|
||
|
result.tv_sec = 0;
|
||
|
result.tv_usec = 0;
|
||
|
return result;
|
||
|
}
|
||
|
if (is_max()) {
|
||
|
result.tv_sec = std::numeric_limits<time_t>::max();
|
||
|
result.tv_usec = static_cast<suseconds_t>(Time::kMicrosecondsPerSecond) - 1;
|
||
|
return result;
|
||
|
}
|
||
|
int64 us = us_ - kTimeTToMicrosecondsOffset;
|
||
|
result.tv_sec = us / Time::kMicrosecondsPerSecond;
|
||
|
result.tv_usec = us % Time::kMicrosecondsPerSecond;
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
} // namespace base
|