991 lines
22 KiB
C
991 lines
22 KiB
C
|
/*
|
||
|
* Copyright (c) 2000-2004 Niels Provos <provos@citi.umich.edu>
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* 1. Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* 3. The name of the author may not be used to endorse or promote products
|
||
|
* derived from this software without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
#ifdef HAVE_CONFIG_H
|
||
|
#include "config.h"
|
||
|
#endif
|
||
|
|
||
|
#ifdef WIN32
|
||
|
#define WIN32_LEAN_AND_MEAN
|
||
|
#include <windows.h>
|
||
|
#undef WIN32_LEAN_AND_MEAN
|
||
|
#endif
|
||
|
#include <sys/types.h>
|
||
|
#ifdef HAVE_SYS_TIME_H
|
||
|
#include <sys/time.h>
|
||
|
#else
|
||
|
#include <sys/_libevent_time.h>
|
||
|
#endif
|
||
|
#include <sys/queue.h>
|
||
|
#include <stdio.h>
|
||
|
#include <stdlib.h>
|
||
|
#ifndef WIN32
|
||
|
#include <unistd.h>
|
||
|
#endif
|
||
|
#include <errno.h>
|
||
|
#include <signal.h>
|
||
|
#include <string.h>
|
||
|
#include <assert.h>
|
||
|
#include <time.h>
|
||
|
|
||
|
#include "event.h"
|
||
|
#include "event-internal.h"
|
||
|
#include "evutil.h"
|
||
|
#include "log.h"
|
||
|
|
||
|
#ifdef HAVE_EVENT_PORTS
|
||
|
extern const struct eventop evportops;
|
||
|
#endif
|
||
|
#ifdef HAVE_SELECT
|
||
|
extern const struct eventop selectops;
|
||
|
#endif
|
||
|
#ifdef HAVE_POLL
|
||
|
extern const struct eventop pollops;
|
||
|
#endif
|
||
|
#ifdef HAVE_EPOLL
|
||
|
extern const struct eventop epollops;
|
||
|
#endif
|
||
|
#ifdef HAVE_WORKING_KQUEUE
|
||
|
extern const struct eventop kqops;
|
||
|
#endif
|
||
|
#ifdef HAVE_DEVPOLL
|
||
|
extern const struct eventop devpollops;
|
||
|
#endif
|
||
|
#ifdef WIN32
|
||
|
extern const struct eventop win32ops;
|
||
|
#endif
|
||
|
|
||
|
/* In order of preference */
|
||
|
static const struct eventop *eventops[] = {
|
||
|
#ifdef HAVE_EVENT_PORTS
|
||
|
&evportops,
|
||
|
#endif
|
||
|
#ifdef HAVE_WORKING_KQUEUE
|
||
|
&kqops,
|
||
|
#endif
|
||
|
#ifdef HAVE_EPOLL
|
||
|
&epollops,
|
||
|
#endif
|
||
|
#ifdef HAVE_DEVPOLL
|
||
|
&devpollops,
|
||
|
#endif
|
||
|
#ifdef HAVE_POLL
|
||
|
&pollops,
|
||
|
#endif
|
||
|
#ifdef HAVE_SELECT
|
||
|
&selectops,
|
||
|
#endif
|
||
|
#ifdef WIN32
|
||
|
&win32ops,
|
||
|
#endif
|
||
|
NULL
|
||
|
};
|
||
|
|
||
|
/* Global state */
|
||
|
struct event_base *current_base = NULL;
|
||
|
extern struct event_base *evsignal_base;
|
||
|
static int use_monotonic = 1;
|
||
|
|
||
|
/* Prototypes */
|
||
|
static void event_queue_insert(struct event_base *, struct event *, int);
|
||
|
static void event_queue_remove(struct event_base *, struct event *, int);
|
||
|
static int event_haveevents(struct event_base *);
|
||
|
|
||
|
static void event_process_active(struct event_base *);
|
||
|
|
||
|
static int timeout_next(struct event_base *, struct timeval **);
|
||
|
static void timeout_process(struct event_base *);
|
||
|
static void timeout_correct(struct event_base *, struct timeval *);
|
||
|
|
||
|
static int
|
||
|
gettime(struct event_base *base, struct timeval *tp)
|
||
|
{
|
||
|
if (base->tv_cache.tv_sec) {
|
||
|
*tp = base->tv_cache;
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
#if defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_MONOTONIC)
|
||
|
struct timespec ts;
|
||
|
|
||
|
if (use_monotonic &&
|
||
|
clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
|
||
|
tp->tv_sec = ts.tv_sec;
|
||
|
tp->tv_usec = ts.tv_nsec / 1000;
|
||
|
return (0);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
use_monotonic = 0;
|
||
|
|
||
|
return (evutil_gettimeofday(tp, NULL));
|
||
|
}
|
||
|
|
||
|
struct event_base *
|
||
|
event_init(void)
|
||
|
{
|
||
|
struct event_base *base = event_base_new();
|
||
|
|
||
|
if (base != NULL)
|
||
|
current_base = base;
|
||
|
|
||
|
return (base);
|
||
|
}
|
||
|
|
||
|
struct event_base *
|
||
|
event_base_new(void)
|
||
|
{
|
||
|
int i;
|
||
|
struct event_base *base;
|
||
|
|
||
|
if ((base = calloc(1, sizeof(struct event_base))) == NULL)
|
||
|
event_err(1, "%s: calloc", __func__);
|
||
|
|
||
|
gettime(base, &base->event_tv);
|
||
|
|
||
|
min_heap_ctor(&base->timeheap);
|
||
|
TAILQ_INIT(&base->eventqueue);
|
||
|
base->sig.ev_signal_pair[0] = -1;
|
||
|
base->sig.ev_signal_pair[1] = -1;
|
||
|
|
||
|
base->evbase = NULL;
|
||
|
for (i = 0; eventops[i] && !base->evbase; i++) {
|
||
|
base->evsel = eventops[i];
|
||
|
|
||
|
base->evbase = base->evsel->init(base);
|
||
|
}
|
||
|
|
||
|
if (base->evbase == NULL)
|
||
|
event_errx(1, "%s: no event mechanism available", __func__);
|
||
|
|
||
|
if (evutil_getenv("EVENT_SHOW_METHOD"))
|
||
|
event_msgx("libevent using: %s\n",
|
||
|
base->evsel->name);
|
||
|
|
||
|
/* allocate a single active event queue */
|
||
|
event_base_priority_init(base, 1);
|
||
|
|
||
|
return (base);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
event_base_free(struct event_base *base)
|
||
|
{
|
||
|
int i, n_deleted=0;
|
||
|
struct event *ev;
|
||
|
|
||
|
if (base == NULL && current_base)
|
||
|
base = current_base;
|
||
|
if (base == current_base)
|
||
|
current_base = NULL;
|
||
|
|
||
|
/* XXX(niels) - check for internal events first */
|
||
|
assert(base);
|
||
|
/* Delete all non-internal events. */
|
||
|
for (ev = TAILQ_FIRST(&base->eventqueue); ev; ) {
|
||
|
struct event *next = TAILQ_NEXT(ev, ev_next);
|
||
|
if (!(ev->ev_flags & EVLIST_INTERNAL)) {
|
||
|
event_del(ev);
|
||
|
++n_deleted;
|
||
|
}
|
||
|
ev = next;
|
||
|
}
|
||
|
while ((ev = min_heap_top(&base->timeheap)) != NULL) {
|
||
|
event_del(ev);
|
||
|
++n_deleted;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < base->nactivequeues; ++i) {
|
||
|
for (ev = TAILQ_FIRST(base->activequeues[i]); ev; ) {
|
||
|
struct event *next = TAILQ_NEXT(ev, ev_active_next);
|
||
|
if (!(ev->ev_flags & EVLIST_INTERNAL)) {
|
||
|
event_del(ev);
|
||
|
++n_deleted;
|
||
|
}
|
||
|
ev = next;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (n_deleted)
|
||
|
event_debug(("%s: %d events were still set in base",
|
||
|
__func__, n_deleted));
|
||
|
|
||
|
if (base->evsel->dealloc != NULL)
|
||
|
base->evsel->dealloc(base, base->evbase);
|
||
|
|
||
|
for (i = 0; i < base->nactivequeues; ++i)
|
||
|
assert(TAILQ_EMPTY(base->activequeues[i]));
|
||
|
|
||
|
assert(min_heap_empty(&base->timeheap));
|
||
|
min_heap_dtor(&base->timeheap);
|
||
|
|
||
|
for (i = 0; i < base->nactivequeues; ++i)
|
||
|
free(base->activequeues[i]);
|
||
|
free(base->activequeues);
|
||
|
|
||
|
assert(TAILQ_EMPTY(&base->eventqueue));
|
||
|
|
||
|
free(base);
|
||
|
}
|
||
|
|
||
|
/* reinitialized the event base after a fork */
|
||
|
int
|
||
|
event_reinit(struct event_base *base)
|
||
|
{
|
||
|
const struct eventop *evsel = base->evsel;
|
||
|
void *evbase = base->evbase;
|
||
|
int res = 0;
|
||
|
struct event *ev;
|
||
|
|
||
|
/* check if this event mechanism requires reinit */
|
||
|
if (!evsel->need_reinit)
|
||
|
return (0);
|
||
|
|
||
|
/* prevent internal delete */
|
||
|
if (base->sig.ev_signal_added) {
|
||
|
/* we cannot call event_del here because the base has
|
||
|
* not been reinitialized yet. */
|
||
|
event_queue_remove(base, &base->sig.ev_signal,
|
||
|
EVLIST_INSERTED);
|
||
|
if (base->sig.ev_signal.ev_flags & EVLIST_ACTIVE)
|
||
|
event_queue_remove(base, &base->sig.ev_signal,
|
||
|
EVLIST_ACTIVE);
|
||
|
base->sig.ev_signal_added = 0;
|
||
|
}
|
||
|
|
||
|
if (base->evsel->dealloc != NULL)
|
||
|
base->evsel->dealloc(base, base->evbase);
|
||
|
evbase = base->evbase = evsel->init(base);
|
||
|
if (base->evbase == NULL)
|
||
|
event_errx(1, "%s: could not reinitialize event mechanism",
|
||
|
__func__);
|
||
|
|
||
|
TAILQ_FOREACH(ev, &base->eventqueue, ev_next) {
|
||
|
if (evsel->add(evbase, ev) == -1)
|
||
|
res = -1;
|
||
|
}
|
||
|
|
||
|
return (res);
|
||
|
}
|
||
|
|
||
|
int
|
||
|
event_priority_init(int npriorities)
|
||
|
{
|
||
|
return event_base_priority_init(current_base, npriorities);
|
||
|
}
|
||
|
|
||
|
int
|
||
|
event_base_priority_init(struct event_base *base, int npriorities)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
if (base->event_count_active)
|
||
|
return (-1);
|
||
|
|
||
|
if (base->nactivequeues && npriorities != base->nactivequeues) {
|
||
|
for (i = 0; i < base->nactivequeues; ++i) {
|
||
|
free(base->activequeues[i]);
|
||
|
}
|
||
|
free(base->activequeues);
|
||
|
}
|
||
|
|
||
|
/* Allocate our priority queues */
|
||
|
base->nactivequeues = npriorities;
|
||
|
base->activequeues = (struct event_list **)
|
||
|
calloc(base->nactivequeues, sizeof(struct event_list *));
|
||
|
if (base->activequeues == NULL)
|
||
|
event_err(1, "%s: calloc", __func__);
|
||
|
|
||
|
for (i = 0; i < base->nactivequeues; ++i) {
|
||
|
base->activequeues[i] = malloc(sizeof(struct event_list));
|
||
|
if (base->activequeues[i] == NULL)
|
||
|
event_err(1, "%s: malloc", __func__);
|
||
|
TAILQ_INIT(base->activequeues[i]);
|
||
|
}
|
||
|
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
int
|
||
|
event_haveevents(struct event_base *base)
|
||
|
{
|
||
|
return (base->event_count > 0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Active events are stored in priority queues. Lower priorities are always
|
||
|
* process before higher priorities. Low priority events can starve high
|
||
|
* priority ones.
|
||
|
*/
|
||
|
|
||
|
static void
|
||
|
event_process_active(struct event_base *base)
|
||
|
{
|
||
|
struct event *ev;
|
||
|
struct event_list *activeq = NULL;
|
||
|
int i;
|
||
|
short ncalls;
|
||
|
|
||
|
for (i = 0; i < base->nactivequeues; ++i) {
|
||
|
if (TAILQ_FIRST(base->activequeues[i]) != NULL) {
|
||
|
activeq = base->activequeues[i];
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
assert(activeq != NULL);
|
||
|
|
||
|
for (ev = TAILQ_FIRST(activeq); ev; ev = TAILQ_FIRST(activeq)) {
|
||
|
if (ev->ev_events & EV_PERSIST)
|
||
|
event_queue_remove(base, ev, EVLIST_ACTIVE);
|
||
|
else
|
||
|
event_del(ev);
|
||
|
|
||
|
/* Allows deletes to work */
|
||
|
ncalls = ev->ev_ncalls;
|
||
|
ev->ev_pncalls = &ncalls;
|
||
|
while (ncalls) {
|
||
|
ncalls--;
|
||
|
ev->ev_ncalls = ncalls;
|
||
|
(*ev->ev_callback)((int)ev->ev_fd, ev->ev_res, ev->ev_arg);
|
||
|
if (base->event_break)
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Wait continously for events. We exit only if no events are left.
|
||
|
*/
|
||
|
|
||
|
int
|
||
|
event_dispatch(void)
|
||
|
{
|
||
|
return (event_loop(0));
|
||
|
}
|
||
|
|
||
|
int
|
||
|
event_base_dispatch(struct event_base *event_base)
|
||
|
{
|
||
|
return (event_base_loop(event_base, 0));
|
||
|
}
|
||
|
|
||
|
const char *
|
||
|
event_base_get_method(struct event_base *base)
|
||
|
{
|
||
|
assert(base);
|
||
|
return (base->evsel->name);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
event_loopexit_cb(int fd, short what, void *arg)
|
||
|
{
|
||
|
struct event_base *base = arg;
|
||
|
base->event_gotterm = 1;
|
||
|
}
|
||
|
|
||
|
/* not thread safe */
|
||
|
int
|
||
|
event_loopexit(const struct timeval *tv)
|
||
|
{
|
||
|
return (event_once(-1, EV_TIMEOUT, event_loopexit_cb,
|
||
|
current_base, tv));
|
||
|
}
|
||
|
|
||
|
int
|
||
|
event_base_loopexit(struct event_base *event_base, const struct timeval *tv)
|
||
|
{
|
||
|
return (event_base_once(event_base, -1, EV_TIMEOUT, event_loopexit_cb,
|
||
|
event_base, tv));
|
||
|
}
|
||
|
|
||
|
/* not thread safe */
|
||
|
int
|
||
|
event_loopbreak(void)
|
||
|
{
|
||
|
return (event_base_loopbreak(current_base));
|
||
|
}
|
||
|
|
||
|
int
|
||
|
event_base_loopbreak(struct event_base *event_base)
|
||
|
{
|
||
|
if (event_base == NULL)
|
||
|
return (-1);
|
||
|
|
||
|
event_base->event_break = 1;
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/* not thread safe */
|
||
|
|
||
|
int
|
||
|
event_loop(int flags)
|
||
|
{
|
||
|
return event_base_loop(current_base, flags);
|
||
|
}
|
||
|
|
||
|
int
|
||
|
event_base_loop(struct event_base *base, int flags)
|
||
|
{
|
||
|
const struct eventop *evsel = base->evsel;
|
||
|
void *evbase = base->evbase;
|
||
|
struct timeval tv;
|
||
|
struct timeval *tv_p;
|
||
|
int res, done;
|
||
|
|
||
|
/* clear time cache */
|
||
|
base->tv_cache.tv_sec = 0;
|
||
|
|
||
|
if (base->sig.ev_signal_added)
|
||
|
evsignal_base = base;
|
||
|
done = 0;
|
||
|
while (!done) {
|
||
|
/* Terminate the loop if we have been asked to */
|
||
|
if (base->event_gotterm) {
|
||
|
base->event_gotterm = 0;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (base->event_break) {
|
||
|
base->event_break = 0;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
timeout_correct(base, &tv);
|
||
|
|
||
|
tv_p = &tv;
|
||
|
if (!base->event_count_active && !(flags & EVLOOP_NONBLOCK)) {
|
||
|
timeout_next(base, &tv_p);
|
||
|
} else {
|
||
|
/*
|
||
|
* if we have active events, we just poll new events
|
||
|
* without waiting.
|
||
|
*/
|
||
|
evutil_timerclear(&tv);
|
||
|
}
|
||
|
|
||
|
/* If we have no events, we just exit */
|
||
|
if (!event_haveevents(base)) {
|
||
|
event_debug(("%s: no events registered.", __func__));
|
||
|
return (1);
|
||
|
}
|
||
|
|
||
|
/* update last old time */
|
||
|
gettime(base, &base->event_tv);
|
||
|
|
||
|
/* clear time cache */
|
||
|
base->tv_cache.tv_sec = 0;
|
||
|
|
||
|
res = evsel->dispatch(base, evbase, tv_p);
|
||
|
|
||
|
if (res == -1)
|
||
|
return (-1);
|
||
|
gettime(base, &base->tv_cache);
|
||
|
|
||
|
timeout_process(base);
|
||
|
|
||
|
if (base->event_count_active) {
|
||
|
event_process_active(base);
|
||
|
if (!base->event_count_active && (flags & EVLOOP_ONCE))
|
||
|
done = 1;
|
||
|
} else if (flags & EVLOOP_NONBLOCK)
|
||
|
done = 1;
|
||
|
}
|
||
|
|
||
|
/* clear time cache */
|
||
|
base->tv_cache.tv_sec = 0;
|
||
|
|
||
|
event_debug(("%s: asked to terminate loop.", __func__));
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
/* Sets up an event for processing once */
|
||
|
|
||
|
struct event_once {
|
||
|
struct event ev;
|
||
|
|
||
|
void (*cb)(int, short, void *);
|
||
|
void *arg;
|
||
|
};
|
||
|
|
||
|
/* One-time callback, it deletes itself */
|
||
|
|
||
|
static void
|
||
|
event_once_cb(int fd, short events, void *arg)
|
||
|
{
|
||
|
struct event_once *eonce = arg;
|
||
|
|
||
|
(*eonce->cb)(fd, events, eonce->arg);
|
||
|
free(eonce);
|
||
|
}
|
||
|
|
||
|
/* not threadsafe, event scheduled once. */
|
||
|
int
|
||
|
event_once(int fd, short events,
|
||
|
void (*callback)(int, short, void *), void *arg, const struct timeval *tv)
|
||
|
{
|
||
|
return event_base_once(current_base, fd, events, callback, arg, tv);
|
||
|
}
|
||
|
|
||
|
/* Schedules an event once */
|
||
|
int
|
||
|
event_base_once(struct event_base *base, int fd, short events,
|
||
|
void (*callback)(int, short, void *), void *arg, const struct timeval *tv)
|
||
|
{
|
||
|
struct event_once *eonce;
|
||
|
struct timeval etv;
|
||
|
int res;
|
||
|
|
||
|
/* We cannot support signals that just fire once */
|
||
|
if (events & EV_SIGNAL)
|
||
|
return (-1);
|
||
|
|
||
|
if ((eonce = calloc(1, sizeof(struct event_once))) == NULL)
|
||
|
return (-1);
|
||
|
|
||
|
eonce->cb = callback;
|
||
|
eonce->arg = arg;
|
||
|
|
||
|
if (events == EV_TIMEOUT) {
|
||
|
if (tv == NULL) {
|
||
|
evutil_timerclear(&etv);
|
||
|
tv = &etv;
|
||
|
}
|
||
|
|
||
|
evtimer_set(&eonce->ev, event_once_cb, eonce);
|
||
|
} else if (events & (EV_READ|EV_WRITE)) {
|
||
|
events &= EV_READ|EV_WRITE;
|
||
|
|
||
|
event_set(&eonce->ev, fd, events, event_once_cb, eonce);
|
||
|
} else {
|
||
|
/* Bad event combination */
|
||
|
free(eonce);
|
||
|
return (-1);
|
||
|
}
|
||
|
|
||
|
res = event_base_set(base, &eonce->ev);
|
||
|
if (res == 0)
|
||
|
res = event_add(&eonce->ev, tv);
|
||
|
if (res != 0) {
|
||
|
free(eonce);
|
||
|
return (res);
|
||
|
}
|
||
|
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
event_set(struct event *ev, int fd, short events,
|
||
|
void (*callback)(int, short, void *), void *arg)
|
||
|
{
|
||
|
/* Take the current base - caller needs to set the real base later */
|
||
|
ev->ev_base = current_base;
|
||
|
|
||
|
ev->ev_callback = callback;
|
||
|
ev->ev_arg = arg;
|
||
|
ev->ev_fd = fd;
|
||
|
ev->ev_events = events;
|
||
|
ev->ev_res = 0;
|
||
|
ev->ev_flags = EVLIST_INIT;
|
||
|
ev->ev_ncalls = 0;
|
||
|
ev->ev_pncalls = NULL;
|
||
|
|
||
|
min_heap_elem_init(ev);
|
||
|
|
||
|
/* by default, we put new events into the middle priority */
|
||
|
if(current_base)
|
||
|
ev->ev_pri = current_base->nactivequeues/2;
|
||
|
}
|
||
|
|
||
|
int
|
||
|
event_base_set(struct event_base *base, struct event *ev)
|
||
|
{
|
||
|
/* Only innocent events may be assigned to a different base */
|
||
|
if (ev->ev_flags != EVLIST_INIT)
|
||
|
return (-1);
|
||
|
|
||
|
ev->ev_base = base;
|
||
|
ev->ev_pri = base->nactivequeues/2;
|
||
|
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Set's the priority of an event - if an event is already scheduled
|
||
|
* changing the priority is going to fail.
|
||
|
*/
|
||
|
|
||
|
int
|
||
|
event_priority_set(struct event *ev, int pri)
|
||
|
{
|
||
|
if (ev->ev_flags & EVLIST_ACTIVE)
|
||
|
return (-1);
|
||
|
if (pri < 0 || pri >= ev->ev_base->nactivequeues)
|
||
|
return (-1);
|
||
|
|
||
|
ev->ev_pri = pri;
|
||
|
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Checks if a specific event is pending or scheduled.
|
||
|
*/
|
||
|
|
||
|
int
|
||
|
event_pending(struct event *ev, short event, struct timeval *tv)
|
||
|
{
|
||
|
struct timeval now, res;
|
||
|
int flags = 0;
|
||
|
|
||
|
if (ev->ev_flags & EVLIST_INSERTED)
|
||
|
flags |= (ev->ev_events & (EV_READ|EV_WRITE|EV_SIGNAL));
|
||
|
if (ev->ev_flags & EVLIST_ACTIVE)
|
||
|
flags |= ev->ev_res;
|
||
|
if (ev->ev_flags & EVLIST_TIMEOUT)
|
||
|
flags |= EV_TIMEOUT;
|
||
|
|
||
|
event &= (EV_TIMEOUT|EV_READ|EV_WRITE|EV_SIGNAL);
|
||
|
|
||
|
/* See if there is a timeout that we should report */
|
||
|
if (tv != NULL && (flags & event & EV_TIMEOUT)) {
|
||
|
gettime(ev->ev_base, &now);
|
||
|
evutil_timersub(&ev->ev_timeout, &now, &res);
|
||
|
/* correctly remap to real time */
|
||
|
evutil_gettimeofday(&now, NULL);
|
||
|
evutil_timeradd(&now, &res, tv);
|
||
|
}
|
||
|
|
||
|
return (flags & event);
|
||
|
}
|
||
|
|
||
|
int
|
||
|
event_add(struct event *ev, const struct timeval *tv)
|
||
|
{
|
||
|
struct event_base *base = ev->ev_base;
|
||
|
const struct eventop *evsel = base->evsel;
|
||
|
void *evbase = base->evbase;
|
||
|
int res = 0;
|
||
|
|
||
|
event_debug((
|
||
|
"event_add: event: %p, %s%s%scall %p",
|
||
|
ev,
|
||
|
ev->ev_events & EV_READ ? "EV_READ " : " ",
|
||
|
ev->ev_events & EV_WRITE ? "EV_WRITE " : " ",
|
||
|
tv ? "EV_TIMEOUT " : " ",
|
||
|
ev->ev_callback));
|
||
|
|
||
|
assert(!(ev->ev_flags & ~EVLIST_ALL));
|
||
|
|
||
|
/*
|
||
|
* prepare for timeout insertion further below, if we get a
|
||
|
* failure on any step, we should not change any state.
|
||
|
*/
|
||
|
if (tv != NULL && !(ev->ev_flags & EVLIST_TIMEOUT)) {
|
||
|
if (min_heap_reserve(&base->timeheap,
|
||
|
1 + min_heap_size(&base->timeheap)) == -1)
|
||
|
return (-1); /* ENOMEM == errno */
|
||
|
}
|
||
|
|
||
|
if ((ev->ev_events & (EV_READ|EV_WRITE|EV_SIGNAL)) &&
|
||
|
!(ev->ev_flags & (EVLIST_INSERTED|EVLIST_ACTIVE))) {
|
||
|
res = evsel->add(evbase, ev);
|
||
|
if (res != -1)
|
||
|
event_queue_insert(base, ev, EVLIST_INSERTED);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* we should change the timout state only if the previous event
|
||
|
* addition succeeded.
|
||
|
*/
|
||
|
if (res != -1 && tv != NULL) {
|
||
|
struct timeval now;
|
||
|
|
||
|
/*
|
||
|
* we already reserved memory above for the case where we
|
||
|
* are not replacing an exisiting timeout.
|
||
|
*/
|
||
|
if (ev->ev_flags & EVLIST_TIMEOUT)
|
||
|
event_queue_remove(base, ev, EVLIST_TIMEOUT);
|
||
|
|
||
|
/* Check if it is active due to a timeout. Rescheduling
|
||
|
* this timeout before the callback can be executed
|
||
|
* removes it from the active list. */
|
||
|
if ((ev->ev_flags & EVLIST_ACTIVE) &&
|
||
|
(ev->ev_res & EV_TIMEOUT)) {
|
||
|
/* See if we are just active executing this
|
||
|
* event in a loop
|
||
|
*/
|
||
|
if (ev->ev_ncalls && ev->ev_pncalls) {
|
||
|
/* Abort loop */
|
||
|
*ev->ev_pncalls = 0;
|
||
|
}
|
||
|
|
||
|
event_queue_remove(base, ev, EVLIST_ACTIVE);
|
||
|
}
|
||
|
|
||
|
gettime(base, &now);
|
||
|
evutil_timeradd(&now, tv, &ev->ev_timeout);
|
||
|
|
||
|
event_debug((
|
||
|
"event_add: timeout in %ld seconds, call %p",
|
||
|
tv->tv_sec, ev->ev_callback));
|
||
|
|
||
|
event_queue_insert(base, ev, EVLIST_TIMEOUT);
|
||
|
}
|
||
|
|
||
|
return (res);
|
||
|
}
|
||
|
|
||
|
int
|
||
|
event_del(struct event *ev)
|
||
|
{
|
||
|
struct event_base *base;
|
||
|
|
||
|
event_debug(("event_del: %p, callback %p",
|
||
|
ev, ev->ev_callback));
|
||
|
|
||
|
/* An event without a base has not been added */
|
||
|
if (ev->ev_base == NULL)
|
||
|
return (-1);
|
||
|
|
||
|
base = ev->ev_base;
|
||
|
|
||
|
assert(!(ev->ev_flags & ~EVLIST_ALL));
|
||
|
|
||
|
/* See if we are just active executing this event in a loop */
|
||
|
if (ev->ev_ncalls && ev->ev_pncalls) {
|
||
|
/* Abort loop */
|
||
|
*ev->ev_pncalls = 0;
|
||
|
}
|
||
|
|
||
|
if (ev->ev_flags & EVLIST_TIMEOUT)
|
||
|
event_queue_remove(base, ev, EVLIST_TIMEOUT);
|
||
|
|
||
|
if (ev->ev_flags & EVLIST_ACTIVE)
|
||
|
event_queue_remove(base, ev, EVLIST_ACTIVE);
|
||
|
|
||
|
if (ev->ev_flags & EVLIST_INSERTED) {
|
||
|
event_queue_remove(base, ev, EVLIST_INSERTED);
|
||
|
return (base->evsel->del(base->evbase, ev));
|
||
|
}
|
||
|
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
event_active(struct event *ev, int res, short ncalls)
|
||
|
{
|
||
|
/* We get different kinds of events, add them together */
|
||
|
if (ev->ev_flags & EVLIST_ACTIVE) {
|
||
|
ev->ev_res |= res;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
ev->ev_res = res;
|
||
|
ev->ev_ncalls = ncalls;
|
||
|
ev->ev_pncalls = NULL;
|
||
|
event_queue_insert(ev->ev_base, ev, EVLIST_ACTIVE);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
timeout_next(struct event_base *base, struct timeval **tv_p)
|
||
|
{
|
||
|
struct timeval now;
|
||
|
struct event *ev;
|
||
|
struct timeval *tv = *tv_p;
|
||
|
|
||
|
if ((ev = min_heap_top(&base->timeheap)) == NULL) {
|
||
|
/* if no time-based events are active wait for I/O */
|
||
|
*tv_p = NULL;
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
if (gettime(base, &now) == -1)
|
||
|
return (-1);
|
||
|
|
||
|
if (evutil_timercmp(&ev->ev_timeout, &now, <=)) {
|
||
|
evutil_timerclear(tv);
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
evutil_timersub(&ev->ev_timeout, &now, tv);
|
||
|
|
||
|
assert(tv->tv_sec >= 0);
|
||
|
assert(tv->tv_usec >= 0);
|
||
|
|
||
|
event_debug(("timeout_next: in %ld seconds", tv->tv_sec));
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Determines if the time is running backwards by comparing the current
|
||
|
* time against the last time we checked. Not needed when using clock
|
||
|
* monotonic.
|
||
|
*/
|
||
|
|
||
|
static void
|
||
|
timeout_correct(struct event_base *base, struct timeval *tv)
|
||
|
{
|
||
|
struct event **pev;
|
||
|
unsigned int size;
|
||
|
struct timeval off;
|
||
|
|
||
|
if (use_monotonic)
|
||
|
return;
|
||
|
|
||
|
/* Check if time is running backwards */
|
||
|
gettime(base, tv);
|
||
|
if (evutil_timercmp(tv, &base->event_tv, >=)) {
|
||
|
base->event_tv = *tv;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
event_debug(("%s: time is running backwards, corrected",
|
||
|
__func__));
|
||
|
evutil_timersub(&base->event_tv, tv, &off);
|
||
|
|
||
|
/*
|
||
|
* We can modify the key element of the node without destroying
|
||
|
* the key, beause we apply it to all in the right order.
|
||
|
*/
|
||
|
pev = base->timeheap.p;
|
||
|
size = base->timeheap.n;
|
||
|
for (; size-- > 0; ++pev) {
|
||
|
struct timeval *ev_tv = &(**pev).ev_timeout;
|
||
|
evutil_timersub(ev_tv, &off, ev_tv);
|
||
|
}
|
||
|
/* Now remember what the new time turned out to be. */
|
||
|
base->event_tv = *tv;
|
||
|
}
|
||
|
|
||
|
void
|
||
|
timeout_process(struct event_base *base)
|
||
|
{
|
||
|
struct timeval now;
|
||
|
struct event *ev;
|
||
|
|
||
|
if (min_heap_empty(&base->timeheap))
|
||
|
return;
|
||
|
|
||
|
gettime(base, &now);
|
||
|
|
||
|
while ((ev = min_heap_top(&base->timeheap))) {
|
||
|
if (evutil_timercmp(&ev->ev_timeout, &now, >))
|
||
|
break;
|
||
|
|
||
|
/* delete this event from the I/O queues */
|
||
|
event_del(ev);
|
||
|
|
||
|
event_debug(("timeout_process: call %p",
|
||
|
ev->ev_callback));
|
||
|
event_active(ev, EV_TIMEOUT, 1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void
|
||
|
event_queue_remove(struct event_base *base, struct event *ev, int queue)
|
||
|
{
|
||
|
if (!(ev->ev_flags & queue))
|
||
|
event_errx(1, "%s: %p(fd %d) not on queue %x", __func__,
|
||
|
ev, ev->ev_fd, queue);
|
||
|
|
||
|
if (~ev->ev_flags & EVLIST_INTERNAL)
|
||
|
base->event_count--;
|
||
|
|
||
|
ev->ev_flags &= ~queue;
|
||
|
switch (queue) {
|
||
|
case EVLIST_INSERTED:
|
||
|
TAILQ_REMOVE(&base->eventqueue, ev, ev_next);
|
||
|
break;
|
||
|
case EVLIST_ACTIVE:
|
||
|
base->event_count_active--;
|
||
|
TAILQ_REMOVE(base->activequeues[ev->ev_pri],
|
||
|
ev, ev_active_next);
|
||
|
break;
|
||
|
case EVLIST_TIMEOUT:
|
||
|
min_heap_erase(&base->timeheap, ev);
|
||
|
break;
|
||
|
default:
|
||
|
event_errx(1, "%s: unknown queue %x", __func__, queue);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void
|
||
|
event_queue_insert(struct event_base *base, struct event *ev, int queue)
|
||
|
{
|
||
|
if (ev->ev_flags & queue) {
|
||
|
/* Double insertion is possible for active events */
|
||
|
if (queue & EVLIST_ACTIVE)
|
||
|
return;
|
||
|
|
||
|
event_errx(1, "%s: %p(fd %d) already on queue %x", __func__,
|
||
|
ev, ev->ev_fd, queue);
|
||
|
}
|
||
|
|
||
|
if (~ev->ev_flags & EVLIST_INTERNAL)
|
||
|
base->event_count++;
|
||
|
|
||
|
ev->ev_flags |= queue;
|
||
|
switch (queue) {
|
||
|
case EVLIST_INSERTED:
|
||
|
TAILQ_INSERT_TAIL(&base->eventqueue, ev, ev_next);
|
||
|
break;
|
||
|
case EVLIST_ACTIVE:
|
||
|
base->event_count_active++;
|
||
|
TAILQ_INSERT_TAIL(base->activequeues[ev->ev_pri],
|
||
|
ev,ev_active_next);
|
||
|
break;
|
||
|
case EVLIST_TIMEOUT: {
|
||
|
min_heap_push(&base->timeheap, ev);
|
||
|
break;
|
||
|
}
|
||
|
default:
|
||
|
event_errx(1, "%s: unknown queue %x", __func__, queue);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Functions for debugging */
|
||
|
|
||
|
const char *
|
||
|
event_get_version(void)
|
||
|
{
|
||
|
return (VERSION);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* No thread-safe interface needed - the information should be the same
|
||
|
* for all threads.
|
||
|
*/
|
||
|
|
||
|
const char *
|
||
|
event_get_method(void)
|
||
|
{
|
||
|
return (current_base->evsel->name);
|
||
|
}
|