shaka-packager/packager/media/base/aes_decryptor.cc

269 lines
8.2 KiB
C++
Raw Normal View History

// Copyright 2016 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
#include "packager/media/base/aes_decryptor.h"
#include <openssl/aes.h>
#include <openssl/err.h>
#include <openssl/rand.h>
#include "packager/base/logging.h"
namespace {
// AES defines three key sizes: 128, 192 and 256 bits.
bool IsKeySizeValidForAes(size_t key_size) {
return key_size == 16 || key_size == 24 || key_size == 32;
}
} // namespace
namespace edash_packager {
namespace media {
AesDecryptor::AesDecryptor() {}
AesDecryptor::~AesDecryptor() {}
AesCtrDecryptor::AesCtrDecryptor() {}
AesCtrDecryptor::~AesCtrDecryptor() {}
bool AesCtrDecryptor::InitializeWithIv(const std::vector<uint8_t>& key,
const std::vector<uint8_t>& iv) {
encryptor_.reset(new AesCtrEncryptor);
return encryptor_->InitializeWithIv(key, iv);
}
// For AES CTR, encryption and decryption are identical.
bool AesCtrDecryptor::Decrypt(const uint8_t* ciphertext,
size_t ciphertext_size,
uint8_t* plaintext) {
DCHECK(encryptor_);
return encryptor_->EncryptData(ciphertext, ciphertext_size, plaintext);
}
bool AesCtrDecryptor::Decrypt(const std::vector<uint8_t>& ciphertext,
std::vector<uint8_t>* plaintext) {
DCHECK(encryptor_);
return encryptor_->Encrypt(ciphertext, plaintext);
}
bool AesCtrDecryptor::Decrypt(const std::string& ciphertext,
std::string* plaintext) {
DCHECK(encryptor_);
return encryptor_->Encrypt(ciphertext, plaintext);
}
bool AesCtrDecryptor::SetIv(const std::vector<uint8_t>& iv) {
DCHECK(encryptor_);
return encryptor_->SetIv(iv);
}
AesCbcPkcs5Decryptor::AesCbcPkcs5Decryptor() {}
AesCbcPkcs5Decryptor::~AesCbcPkcs5Decryptor() {}
bool AesCbcPkcs5Decryptor::InitializeWithIv(const std::vector<uint8_t>& key,
const std::vector<uint8_t>& iv) {
if (!IsKeySizeValidForAes(key.size())) {
LOG(ERROR) << "Invalid AES key size: " << key.size();
return false;
}
if (iv.size() != AES_BLOCK_SIZE) {
LOG(ERROR) << "Invalid IV size: " << iv.size();
return false;
}
aes_key_.reset(new AES_KEY());
CHECK_EQ(AES_set_decrypt_key(&key[0], key.size() * 8, aes_key_.get()), 0);
iv_ = iv;
return true;
}
bool AesCbcPkcs5Decryptor::Decrypt(const uint8_t* ciphertext,
size_t ciphertext_size,
uint8_t* plaintext) {
NOTIMPLEMENTED();
return false;
}
bool AesCbcPkcs5Decryptor::Decrypt(const std::vector<uint8_t>& ciphertext,
std::vector<uint8_t>* plaintext) {
NOTIMPLEMENTED();
return false;
}
bool AesCbcPkcs5Decryptor::Decrypt(const std::string& ciphertext,
std::string* plaintext) {
if ((ciphertext.size() % AES_BLOCK_SIZE) != 0) {
LOG(ERROR) << "Expecting cipher text size to be multiple of "
<< AES_BLOCK_SIZE << ", got " << ciphertext.size();
return false;
}
DCHECK(plaintext);
DCHECK(aes_key_);
plaintext->resize(ciphertext.size());
AES_cbc_encrypt(reinterpret_cast<const uint8_t*>(ciphertext.data()),
reinterpret_cast<uint8_t*>(string_as_array(plaintext)),
ciphertext.size(),
aes_key_.get(),
&iv_[0],
AES_DECRYPT);
// Strip off PKCS5 padding bytes.
const uint8_t num_padding_bytes = (*plaintext)[plaintext->size() - 1];
if (num_padding_bytes > AES_BLOCK_SIZE) {
LOG(ERROR) << "Padding length is too large : "
<< static_cast<int>(num_padding_bytes);
return false;
}
plaintext->resize(plaintext->size() - num_padding_bytes);
return true;
}
bool AesCbcPkcs5Decryptor::SetIv(const std::vector<uint8_t>& iv) {
if (iv.size() != AES_BLOCK_SIZE) {
LOG(ERROR) << "Invalid IV size: " << iv.size();
return false;
}
iv_ = iv;
return true;
}
AesCbcCtsDecryptor::AesCbcCtsDecryptor() {}
AesCbcCtsDecryptor::~AesCbcCtsDecryptor() {}
bool AesCbcCtsDecryptor::InitializeWithIv(const std::vector<uint8_t>& key,
const std::vector<uint8_t>& iv) {
if (!IsKeySizeValidForAes(key.size())) {
LOG(ERROR) << "Invalid AES key size: " << key.size();
return false;
}
if (iv.size() != AES_BLOCK_SIZE) {
LOG(ERROR) << "Invalid IV size: " << iv.size();
return false;
}
aes_key_.reset(new AES_KEY());
CHECK_EQ(AES_set_decrypt_key(&key[0], key.size() * 8, aes_key_.get()), 0);
iv_ = iv;
return true;
}
bool AesCbcCtsDecryptor::Decrypt(const uint8_t* ciphertext,
size_t ciphertext_size,
uint8_t* plaintext) {
DCHECK(ciphertext);
DCHECK(plaintext);
if (ciphertext_size < AES_BLOCK_SIZE) {
// Don't have a full block, leave unencrypted.
memcpy(plaintext, ciphertext, ciphertext_size);
return true;
}
std::vector<uint8_t> iv(iv_);
size_t residual_block_size = ciphertext_size % AES_BLOCK_SIZE;
if (residual_block_size == 0) {
// No residual block. No need to do ciphertext stealing.
AES_cbc_encrypt(ciphertext,
plaintext,
ciphertext_size,
aes_key_.get(),
&iv[0],
AES_DECRYPT);
return true;
}
// AES-CBC decrypt everything up to the next-to-last full block.
size_t cbc_size = ciphertext_size - residual_block_size;
if (cbc_size > AES_BLOCK_SIZE) {
AES_cbc_encrypt(ciphertext,
plaintext,
cbc_size - AES_BLOCK_SIZE,
aes_key_.get(),
&iv[0],
AES_DECRYPT);
}
// Determine what the last IV should be so that we can "skip ahead" in the
// CBC decryption.
std::vector<uint8_t> last_iv(
ciphertext + ciphertext_size - residual_block_size,
ciphertext + ciphertext_size);
last_iv.resize(AES_BLOCK_SIZE, 0);
// Decrypt the next-to-last block using the IV determined above. This decrypts
// the residual block bits.
AES_cbc_encrypt(
ciphertext + ciphertext_size - residual_block_size - AES_BLOCK_SIZE,
plaintext + ciphertext_size - residual_block_size - AES_BLOCK_SIZE,
AES_BLOCK_SIZE, aes_key_.get(), &last_iv[0], AES_DECRYPT);
// Swap back the residual block bits and the next-to-last full block.
if (plaintext == ciphertext) {
uint8_t* ptr1 = plaintext + ciphertext_size - residual_block_size;
uint8_t* ptr2 = plaintext + ciphertext_size - residual_block_size - AES_BLOCK_SIZE;
for (size_t i = 0; i < residual_block_size; ++i) {
uint8_t temp = *ptr1;
*ptr1 = *ptr2;
*ptr2 = temp;
++ptr1;
++ptr2;
}
} else {
uint8_t* residual_plaintext_block =
plaintext + ciphertext_size - residual_block_size;
memcpy(residual_plaintext_block, residual_plaintext_block - AES_BLOCK_SIZE,
residual_block_size);
memcpy(residual_plaintext_block - AES_BLOCK_SIZE,
ciphertext + ciphertext_size - residual_block_size,
residual_block_size);
}
// Decrypt the last full block.
AES_cbc_encrypt(
plaintext + ciphertext_size - residual_block_size - AES_BLOCK_SIZE,
plaintext + ciphertext_size - residual_block_size - AES_BLOCK_SIZE,
AES_BLOCK_SIZE, aes_key_.get(), &iv[0], AES_DECRYPT);
return true;
}
bool AesCbcCtsDecryptor::Decrypt(const std::vector<uint8_t>& ciphertext,
std::vector<uint8_t>* plaintext) {
DCHECK(plaintext);
plaintext->resize(ciphertext.size(), 0);
if (ciphertext.empty())
return true;
return Decrypt(ciphertext.data(), ciphertext.size(), &(*plaintext)[0]);
}
bool AesCbcCtsDecryptor::Decrypt(const std::string& ciphertext,
std::string* plaintext) {
NOTIMPLEMENTED();
return false;
}
bool AesCbcCtsDecryptor::SetIv(const std::vector<uint8_t>& iv) {
if (iv.size() != AES_BLOCK_SIZE) {
LOG(ERROR) << "Invalid IV size: " << iv.size();
return false;
}
iv_ = iv;
return true;
}
} // namespace media
} // namespace edash_packager