shaka-packager/base/process/process_iterator_linux.cc

138 lines
4.0 KiB
C++
Raw Normal View History

// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/process/process_iterator.h"
#include "base/file_util.h"
#include "base/logging.h"
#include "base/process/internal_linux.h"
#include "base/strings/string_util.h"
#include "base/threading/thread_restrictions.h"
namespace base {
namespace {
// Reads the |field_num|th field from |proc_stats|.
// Returns an empty string on failure.
// This version only handles VM_COMM and VM_STATE, which are the only fields
// that are strings.
std::string GetProcStatsFieldAsString(
const std::vector<std::string>& proc_stats,
internal::ProcStatsFields field_num) {
if (field_num < internal::VM_COMM || field_num > internal::VM_STATE) {
NOTREACHED();
return std::string();
}
if (proc_stats.size() > static_cast<size_t>(field_num))
return proc_stats[field_num];
NOTREACHED();
return 0;
}
// Reads /proc/<pid>/cmdline and populates |proc_cmd_line_args| with the command
// line arguments. Returns true if successful.
// Note: /proc/<pid>/cmdline contains command line arguments separated by single
// null characters. We tokenize it into a vector of strings using '\0' as a
// delimiter.
bool GetProcCmdline(pid_t pid, std::vector<std::string>* proc_cmd_line_args) {
// Synchronously reading files in /proc is safe.
ThreadRestrictions::ScopedAllowIO allow_io;
FilePath cmd_line_file = internal::GetProcPidDir(pid).Append("cmdline");
std::string cmd_line;
if (!file_util::ReadFileToString(cmd_line_file, &cmd_line))
return false;
std::string delimiters;
delimiters.push_back('\0');
Tokenize(cmd_line, delimiters, proc_cmd_line_args);
return true;
}
} // namespace
ProcessIterator::ProcessIterator(const ProcessFilter* filter)
: filter_(filter) {
procfs_dir_ = opendir(internal::kProcDir);
}
ProcessIterator::~ProcessIterator() {
if (procfs_dir_) {
closedir(procfs_dir_);
procfs_dir_ = NULL;
}
}
bool ProcessIterator::CheckForNextProcess() {
// TODO(port): skip processes owned by different UID
pid_t pid = kNullProcessId;
std::vector<std::string> cmd_line_args;
std::string stats_data;
std::vector<std::string> proc_stats;
// Arbitrarily guess that there will never be more than 200 non-process
// files in /proc. Hardy has 53 and Lucid has 61.
int skipped = 0;
const int kSkipLimit = 200;
while (skipped < kSkipLimit) {
dirent* slot = readdir(procfs_dir_);
// all done looking through /proc?
if (!slot)
return false;
// If not a process, keep looking for one.
pid = internal::ProcDirSlotToPid(slot->d_name);
if (!pid) {
skipped++;
continue;
}
if (!GetProcCmdline(pid, &cmd_line_args))
continue;
if (!internal::ReadProcStats(pid, &stats_data))
continue;
if (!internal::ParseProcStats(stats_data, &proc_stats))
continue;
std::string runstate =
GetProcStatsFieldAsString(proc_stats, internal::VM_STATE);
if (runstate.size() != 1) {
NOTREACHED();
continue;
}
// Is the process in 'Zombie' state, i.e. dead but waiting to be reaped?
// Allowed values: D R S T Z
if (runstate[0] != 'Z')
break;
// Nope, it's a zombie; somebody isn't cleaning up after their children.
// (e.g. WaitForProcessesToExit doesn't clean up after dead children yet.)
// There could be a lot of zombies, can't really decrement i here.
}
if (skipped >= kSkipLimit) {
NOTREACHED();
return false;
}
entry_.pid_ = pid;
entry_.ppid_ = GetProcStatsFieldAsInt(proc_stats, internal::VM_PPID);
entry_.gid_ = GetProcStatsFieldAsInt(proc_stats, internal::VM_PGRP);
entry_.cmd_line_args_.assign(cmd_line_args.begin(), cmd_line_args.end());
entry_.exe_file_ = GetProcessExecutablePath(pid).BaseName().value();
return true;
}
bool NamedProcessIterator::IncludeEntry() {
if (executable_name_ != entry().exe_file())
return false;
return ProcessIterator::IncludeEntry();
}
} // namespace base