307 lines
11 KiB
C++
307 lines
11 KiB
C++
|
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
|
||
|
// Use of this source code is governed by a BSD-style license that can be
|
||
|
// found in the LICENSE file.
|
||
|
|
||
|
#include <fcntl.h>
|
||
|
#include <stdio.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <string.h>
|
||
|
#include <sys/stat.h>
|
||
|
#include <sys/types.h>
|
||
|
|
||
|
#include <algorithm>
|
||
|
#include <limits>
|
||
|
|
||
|
#include "base/file_util.h"
|
||
|
#include "base/logging.h"
|
||
|
#include "base/memory/scoped_ptr.h"
|
||
|
#include "build/build_config.h"
|
||
|
#include "testing/gtest/include/gtest/gtest.h"
|
||
|
|
||
|
#if defined(OS_POSIX)
|
||
|
#include <sys/mman.h>
|
||
|
#include <unistd.h>
|
||
|
#endif
|
||
|
|
||
|
using std::nothrow;
|
||
|
using std::numeric_limits;
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
// This function acts as a compiler optimization barrier. We use it to
|
||
|
// prevent the compiler from making an expression a compile-time constant.
|
||
|
// We also use it so that the compiler doesn't discard certain return values
|
||
|
// as something we don't need (see the comment with calloc below).
|
||
|
template <typename Type>
|
||
|
Type HideValueFromCompiler(volatile Type value) {
|
||
|
#if defined(__GNUC__)
|
||
|
// In a GCC compatible compiler (GCC or Clang), make this compiler barrier
|
||
|
// more robust than merely using "volatile".
|
||
|
__asm__ volatile ("" : "+r" (value));
|
||
|
#endif // __GNUC__
|
||
|
return value;
|
||
|
}
|
||
|
|
||
|
// - NO_TCMALLOC (should be defined if we compile with linux_use_tcmalloc=0)
|
||
|
// - ADDRESS_SANITIZER because it has its own memory allocator
|
||
|
// - IOS does not use tcmalloc
|
||
|
// - OS_MACOSX does not use tcmalloc
|
||
|
#if !defined(NO_TCMALLOC) && !defined(ADDRESS_SANITIZER) && \
|
||
|
!defined(OS_IOS) && !defined(OS_MACOSX)
|
||
|
#define TCMALLOC_TEST(function) function
|
||
|
#else
|
||
|
#define TCMALLOC_TEST(function) DISABLED_##function
|
||
|
#endif
|
||
|
|
||
|
// TODO(jln): switch to std::numeric_limits<int>::max() when we switch to
|
||
|
// C++11.
|
||
|
const size_t kTooBigAllocSize = INT_MAX;
|
||
|
|
||
|
// Detect runtime TCMalloc bypasses.
|
||
|
bool IsTcMallocBypassed() {
|
||
|
#if defined(OS_LINUX) || defined(OS_CHROMEOS)
|
||
|
// This should detect a TCMalloc bypass from Valgrind.
|
||
|
char* g_slice = getenv("G_SLICE");
|
||
|
if (g_slice && !strcmp(g_slice, "always-malloc"))
|
||
|
return true;
|
||
|
#elif defined(OS_WIN)
|
||
|
// This should detect a TCMalloc bypass from setting
|
||
|
// the CHROME_ALLOCATOR environment variable.
|
||
|
char* allocator = getenv("CHROME_ALLOCATOR");
|
||
|
if (allocator && strcmp(allocator, "tcmalloc"))
|
||
|
return true;
|
||
|
#endif
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
bool CallocDiesOnOOM() {
|
||
|
// The wrapper function in base/process_util_linux.cc that is used when we
|
||
|
// compile without TCMalloc will just die on OOM instead of returning NULL.
|
||
|
// This function is explicitly disabled if we compile with AddressSanitizer,
|
||
|
// MemorySanitizer or ThreadSanitizer.
|
||
|
#if defined(OS_LINUX) && defined(NO_TCMALLOC) && \
|
||
|
(!defined(ADDRESS_SANITIZER) && \
|
||
|
!defined(MEMORY_SANITIZER) && \
|
||
|
!defined(THREAD_SANITIZER))
|
||
|
return true;
|
||
|
#else
|
||
|
return false;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
// Fake test that allow to know the state of TCMalloc by looking at bots.
|
||
|
TEST(SecurityTest, TCMALLOC_TEST(IsTCMallocDynamicallyBypassed)) {
|
||
|
printf("Malloc is dynamically bypassed: %s\n",
|
||
|
IsTcMallocBypassed() ? "yes." : "no.");
|
||
|
}
|
||
|
|
||
|
// The MemoryAllocationRestrictions* tests test that we can not allocate a
|
||
|
// memory range that cannot be indexed via an int. This is used to mitigate
|
||
|
// vulnerabilities in libraries that use int instead of size_t. See
|
||
|
// crbug.com/169327.
|
||
|
|
||
|
TEST(SecurityTest, TCMALLOC_TEST(MemoryAllocationRestrictionsMalloc)) {
|
||
|
if (!IsTcMallocBypassed()) {
|
||
|
scoped_ptr<char, base::FreeDeleter> ptr(static_cast<char*>(
|
||
|
HideValueFromCompiler(malloc(kTooBigAllocSize))));
|
||
|
ASSERT_TRUE(!ptr);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
TEST(SecurityTest, TCMALLOC_TEST(MemoryAllocationRestrictionsCalloc)) {
|
||
|
if (!IsTcMallocBypassed()) {
|
||
|
scoped_ptr<char, base::FreeDeleter> ptr(static_cast<char*>(
|
||
|
HideValueFromCompiler(calloc(kTooBigAllocSize, 1))));
|
||
|
ASSERT_TRUE(!ptr);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
TEST(SecurityTest, TCMALLOC_TEST(MemoryAllocationRestrictionsRealloc)) {
|
||
|
if (!IsTcMallocBypassed()) {
|
||
|
char* orig_ptr = static_cast<char*>(malloc(1));
|
||
|
ASSERT_TRUE(orig_ptr);
|
||
|
scoped_ptr<char, base::FreeDeleter> ptr(static_cast<char*>(
|
||
|
HideValueFromCompiler(realloc(orig_ptr, kTooBigAllocSize))));
|
||
|
ASSERT_TRUE(!ptr);
|
||
|
// If realloc() did not succeed, we need to free orig_ptr.
|
||
|
free(orig_ptr);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
typedef struct {
|
||
|
char large_array[kTooBigAllocSize];
|
||
|
} VeryLargeStruct;
|
||
|
|
||
|
TEST(SecurityTest, TCMALLOC_TEST(MemoryAllocationRestrictionsNew)) {
|
||
|
if (!IsTcMallocBypassed()) {
|
||
|
scoped_ptr<VeryLargeStruct> ptr(
|
||
|
HideValueFromCompiler(new (nothrow) VeryLargeStruct));
|
||
|
ASSERT_TRUE(!ptr);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
TEST(SecurityTest, TCMALLOC_TEST(MemoryAllocationRestrictionsNewArray)) {
|
||
|
if (!IsTcMallocBypassed()) {
|
||
|
scoped_ptr<char[]> ptr(
|
||
|
HideValueFromCompiler(new (nothrow) char[kTooBigAllocSize]));
|
||
|
ASSERT_TRUE(!ptr);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// The tests bellow check for overflows in new[] and calloc().
|
||
|
|
||
|
#if defined(OS_IOS) || defined(OS_WIN)
|
||
|
#define DISABLE_ON_IOS_AND_WIN(function) DISABLED_##function
|
||
|
#else
|
||
|
#define DISABLE_ON_IOS_AND_WIN(function) function
|
||
|
#endif
|
||
|
|
||
|
// There are platforms where these tests are known to fail. We would like to
|
||
|
// be able to easily check the status on the bots, but marking tests as
|
||
|
// FAILS_ is too clunky.
|
||
|
void OverflowTestsSoftExpectTrue(bool overflow_detected) {
|
||
|
if (!overflow_detected) {
|
||
|
#if defined(OS_LINUX) || defined(OS_ANDROID) || defined(OS_MACOSX)
|
||
|
// Sadly, on Linux, Android, and OSX we don't have a good story yet. Don't
|
||
|
// fail the test, but report.
|
||
|
printf("Platform has overflow: %s\n",
|
||
|
!overflow_detected ? "yes." : "no.");
|
||
|
#else
|
||
|
// Otherwise, fail the test. (Note: EXPECT are ok in subfunctions, ASSERT
|
||
|
// aren't).
|
||
|
EXPECT_TRUE(overflow_detected);
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Test array[TooBig][X] and array[X][TooBig] allocations for int overflows.
|
||
|
// IOS doesn't honor nothrow, so disable the test there.
|
||
|
// Crashes on Windows Dbg builds, disable there as well.
|
||
|
TEST(SecurityTest, DISABLE_ON_IOS_AND_WIN(NewOverflow)) {
|
||
|
const size_t kArraySize = 4096;
|
||
|
// We want something "dynamic" here, so that the compiler doesn't
|
||
|
// immediately reject crazy arrays.
|
||
|
const size_t kDynamicArraySize = HideValueFromCompiler(kArraySize);
|
||
|
// numeric_limits are still not constexpr until we switch to C++11, so we
|
||
|
// use an ugly cast.
|
||
|
const size_t kMaxSizeT = ~static_cast<size_t>(0);
|
||
|
ASSERT_EQ(numeric_limits<size_t>::max(), kMaxSizeT);
|
||
|
const size_t kArraySize2 = kMaxSizeT / kArraySize + 10;
|
||
|
const size_t kDynamicArraySize2 = HideValueFromCompiler(kArraySize2);
|
||
|
{
|
||
|
scoped_ptr<char[][kArraySize]> array_pointer(new (nothrow)
|
||
|
char[kDynamicArraySize2][kArraySize]);
|
||
|
OverflowTestsSoftExpectTrue(!array_pointer);
|
||
|
}
|
||
|
// On windows, the compiler prevents static array sizes of more than
|
||
|
// 0x7fffffff (error C2148).
|
||
|
#if !defined(OS_WIN) || !defined(ARCH_CPU_64_BITS)
|
||
|
{
|
||
|
scoped_ptr<char[][kArraySize2]> array_pointer(new (nothrow)
|
||
|
char[kDynamicArraySize][kArraySize2]);
|
||
|
OverflowTestsSoftExpectTrue(!array_pointer);
|
||
|
}
|
||
|
#endif // !defined(OS_WIN) || !defined(ARCH_CPU_64_BITS)
|
||
|
}
|
||
|
|
||
|
// Call calloc(), eventually free the memory and return whether or not
|
||
|
// calloc() did succeed.
|
||
|
bool CallocReturnsNull(size_t nmemb, size_t size) {
|
||
|
scoped_ptr<char, base::FreeDeleter> array_pointer(
|
||
|
static_cast<char*>(calloc(nmemb, size)));
|
||
|
// We need the call to HideValueFromCompiler(): we have seen LLVM
|
||
|
// optimize away the call to calloc() entirely and assume
|
||
|
// the pointer to not be NULL.
|
||
|
return HideValueFromCompiler(array_pointer.get()) == NULL;
|
||
|
}
|
||
|
|
||
|
// Test if calloc() can overflow.
|
||
|
TEST(SecurityTest, CallocOverflow) {
|
||
|
const size_t kArraySize = 4096;
|
||
|
const size_t kMaxSizeT = numeric_limits<size_t>::max();
|
||
|
const size_t kArraySize2 = kMaxSizeT / kArraySize + 10;
|
||
|
if (!CallocDiesOnOOM()) {
|
||
|
EXPECT_TRUE(CallocReturnsNull(kArraySize, kArraySize2));
|
||
|
EXPECT_TRUE(CallocReturnsNull(kArraySize2, kArraySize));
|
||
|
} else {
|
||
|
// It's also ok for calloc to just terminate the process.
|
||
|
#if defined(GTEST_HAS_DEATH_TEST)
|
||
|
EXPECT_DEATH(CallocReturnsNull(kArraySize, kArraySize2), "");
|
||
|
EXPECT_DEATH(CallocReturnsNull(kArraySize2, kArraySize), "");
|
||
|
#endif // GTEST_HAS_DEATH_TEST
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#if (defined(OS_LINUX) || defined(OS_CHROMEOS)) && defined(__x86_64__)
|
||
|
// Useful for debugging.
|
||
|
void PrintProcSelfMaps() {
|
||
|
int fd = open("/proc/self/maps", O_RDONLY);
|
||
|
file_util::ScopedFD fd_closer(&fd);
|
||
|
ASSERT_GE(fd, 0);
|
||
|
char buffer[1<<13];
|
||
|
int ret;
|
||
|
ret = read(fd, buffer, sizeof(buffer) - 1);
|
||
|
ASSERT_GT(ret, 0);
|
||
|
buffer[ret - 1] = 0;
|
||
|
fprintf(stdout, "%s\n", buffer);
|
||
|
}
|
||
|
|
||
|
// Check if ptr1 and ptr2 are separated by less than size chars.
|
||
|
bool ArePointersToSameArea(void* ptr1, void* ptr2, size_t size) {
|
||
|
ptrdiff_t ptr_diff = reinterpret_cast<char*>(std::max(ptr1, ptr2)) -
|
||
|
reinterpret_cast<char*>(std::min(ptr1, ptr2));
|
||
|
return static_cast<size_t>(ptr_diff) <= size;
|
||
|
}
|
||
|
|
||
|
// Check if TCMalloc uses an underlying random memory allocator.
|
||
|
TEST(SecurityTest, TCMALLOC_TEST(RandomMemoryAllocations)) {
|
||
|
if (IsTcMallocBypassed())
|
||
|
return;
|
||
|
size_t kPageSize = 4096; // We support x86_64 only.
|
||
|
// Check that malloc() returns an address that is neither the kernel's
|
||
|
// un-hinted mmap area, nor the current brk() area. The first malloc() may
|
||
|
// not be at a random address because TCMalloc will first exhaust any memory
|
||
|
// that it has allocated early on, before starting the sophisticated
|
||
|
// allocators.
|
||
|
void* default_mmap_heap_address =
|
||
|
mmap(0, kPageSize, PROT_READ|PROT_WRITE,
|
||
|
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
|
||
|
ASSERT_NE(default_mmap_heap_address,
|
||
|
static_cast<void*>(MAP_FAILED));
|
||
|
ASSERT_EQ(munmap(default_mmap_heap_address, kPageSize), 0);
|
||
|
void* brk_heap_address = sbrk(0);
|
||
|
ASSERT_NE(brk_heap_address, reinterpret_cast<void*>(-1));
|
||
|
ASSERT_TRUE(brk_heap_address != NULL);
|
||
|
// 1 MB should get us past what TCMalloc pre-allocated before initializing
|
||
|
// the sophisticated allocators.
|
||
|
size_t kAllocSize = 1<<20;
|
||
|
scoped_ptr<char, base::FreeDeleter> ptr(
|
||
|
static_cast<char*>(malloc(kAllocSize)));
|
||
|
ASSERT_TRUE(ptr != NULL);
|
||
|
// If two pointers are separated by less than 512MB, they are considered
|
||
|
// to be in the same area.
|
||
|
// Our random pointer could be anywhere within 0x3fffffffffff (46bits),
|
||
|
// and we are checking that it's not withing 1GB (30 bits) from two
|
||
|
// addresses (brk and mmap heap). We have roughly one chance out of
|
||
|
// 2^15 to flake.
|
||
|
const size_t kAreaRadius = 1<<29;
|
||
|
bool in_default_mmap_heap = ArePointersToSameArea(
|
||
|
ptr.get(), default_mmap_heap_address, kAreaRadius);
|
||
|
EXPECT_FALSE(in_default_mmap_heap);
|
||
|
|
||
|
bool in_default_brk_heap = ArePointersToSameArea(
|
||
|
ptr.get(), brk_heap_address, kAreaRadius);
|
||
|
EXPECT_FALSE(in_default_brk_heap);
|
||
|
|
||
|
// In the implementation, we always mask our random addresses with
|
||
|
// kRandomMask, so we use it as an additional detection mechanism.
|
||
|
const uintptr_t kRandomMask = 0x3fffffffffffULL;
|
||
|
bool impossible_random_address =
|
||
|
reinterpret_cast<uintptr_t>(ptr.get()) & ~kRandomMask;
|
||
|
EXPECT_FALSE(impossible_random_address);
|
||
|
}
|
||
|
|
||
|
#endif // (defined(OS_LINUX) || defined(OS_CHROMEOS)) && defined(__x86_64__)
|
||
|
|
||
|
} // namespace
|