shaka-packager/media/formats/mp2t/es_parser_h264_unittest.cc

266 lines
8.0 KiB
C++
Raw Normal View History

// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <algorithm>
#include <vector>
#include "base/bind.h"
#include "base/command_line.h"
#include "base/files/memory_mapped_file.h"
#include "base/logging.h"
#include "base/path_service.h"
#include "media/base/media_sample.h"
#include "media/base/timestamp.h"
#include "media/filters/h264_parser.h"
#include "media/formats/mp2t/es_parser_h264.h"
#include "media/test/test_data_util.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace media {
class VideoStreamInfo;
namespace mp2t {
namespace {
struct Packet {
// Offset in the stream.
size_t offset;
// Size of the packet.
size_t size;
};
// Compute the size of each packet assuming packets are given in stream order
// and the last packet covers the end of the stream.
void ComputePacketSize(std::vector<Packet>& packets, size_t stream_size) {
for (size_t k = 0; k < packets.size() - 1; k++) {
DCHECK_GE(packets[k + 1].offset, packets[k].offset);
packets[k].size = packets[k + 1].offset - packets[k].offset;
}
packets[packets.size() - 1].size =
stream_size - packets[packets.size() - 1].offset;
}
// Get the offset of the start of each access unit.
// This function assumes there is only one slice per access unit.
// This is a very simplified access unit segmenter that is good
// enough for unit tests.
std::vector<Packet> GetAccessUnits(const uint8* stream, size_t stream_size) {
std::vector<Packet> access_units;
bool start_access_unit = true;
// In a first pass, retrieve the offsets of all access units.
size_t offset = 0;
while (true) {
// Find the next start code.
off_t relative_offset = 0;
off_t start_code_size = 0;
bool success = H264Parser::FindStartCode(
&stream[offset], stream_size - offset,
&relative_offset, &start_code_size);
if (!success)
break;
offset += relative_offset;
if (start_access_unit) {
Packet cur_access_unit;
cur_access_unit.offset = offset;
access_units.push_back(cur_access_unit);
start_access_unit = false;
}
// Get the NALU type.
offset += start_code_size;
if (offset >= stream_size)
break;
int nal_unit_type = stream[offset] & 0x1f;
// We assume there is only one slice per access unit.
if (nal_unit_type == H264NALU::kIDRSlice ||
nal_unit_type == H264NALU::kNonIDRSlice) {
start_access_unit = true;
}
}
ComputePacketSize(access_units, stream_size);
return access_units;
}
// Append an AUD NALU at the beginning of each access unit
// needed for streams which do not already have AUD NALUs.
void AppendAUD(
const uint8* stream, size_t stream_size,
const std::vector<Packet>& access_units,
std::vector<uint8>& stream_with_aud,
std::vector<Packet>& access_units_with_aud) {
uint8 aud[] = { 0x00, 0x00, 0x01, 0x09 };
stream_with_aud.resize(stream_size + access_units.size() * sizeof(aud));
access_units_with_aud.resize(access_units.size());
size_t offset = 0;
for (size_t k = 0; k < access_units.size(); k++) {
access_units_with_aud[k].offset = offset;
access_units_with_aud[k].size = access_units[k].size + sizeof(aud);
memcpy(&stream_with_aud[offset], aud, sizeof(aud));
offset += sizeof(aud);
memcpy(&stream_with_aud[offset],
&stream[access_units[k].offset], access_units[k].size);
offset += access_units[k].size;
}
}
} // namespace
class EsParserH264Test : public testing::Test {
public:
EsParserH264Test() : sample_count_(0) {
}
void LoadStream(const char* filename);
void ProcessPesPackets(const std::vector<Packet>& pes_packets);
void EmitSample(uint32 pid, scoped_refptr<MediaSample>& sample) {
sample_count_++;
}
void NewVideoConfig(scoped_refptr<StreamInfo>& config) {
}
size_t sample_count() const { return sample_count_; }
// Stream with AUD NALUs.
std::vector<uint8> stream_;
// Access units of the stream with AUD NALUs.
std::vector<Packet> access_units_;
protected:
size_t sample_count_;
};
void EsParserH264Test::LoadStream(const char* filename) {
base::FilePath file_path = GetTestDataFilePath(filename);
base::MemoryMappedFile stream_without_aud;
ASSERT_TRUE(stream_without_aud.Initialize(file_path))
<< "Couldn't open stream file: " << file_path.MaybeAsASCII();
// The input file does not have AUDs.
std::vector<Packet> access_units_without_aud = GetAccessUnits(
stream_without_aud.data(), stream_without_aud.length());
ASSERT_GT(access_units_without_aud.size(), 0u);
AppendAUD(stream_without_aud.data(), stream_without_aud.length(),
access_units_without_aud,
stream_, access_units_);
}
void EsParserH264Test::ProcessPesPackets(
const std::vector<Packet>& pes_packets) {
// Duration of one 25fps video frame in 90KHz clock units.
const uint32 kMpegTicksPerFrame = 3600;
EsParserH264 es_parser(
0,
base::Bind(&EsParserH264Test::NewVideoConfig, base::Unretained(this)),
base::Bind(&EsParserH264Test::EmitSample, base::Unretained(this)));
size_t au_idx = 0;
for (size_t k = 0; k < pes_packets.size(); k++) {
size_t cur_pes_offset = pes_packets[k].offset;
size_t cur_pes_size = pes_packets[k].size;
// Update the access unit the PES belongs to from a timing point of view.
while (au_idx < access_units_.size() - 1 &&
cur_pes_offset <= access_units_[au_idx + 1].offset &&
cur_pes_offset + cur_pes_size > access_units_[au_idx + 1].offset) {
au_idx++;
}
// Check whether the PES packet includes the start of an access unit.
// The timings are relevant only in this case.
int64 pts = kNoTimestamp;
int64 dts = kNoTimestamp;
if (cur_pes_offset <= access_units_[au_idx].offset &&
cur_pes_offset + cur_pes_size > access_units_[au_idx].offset) {
pts = au_idx * kMpegTicksPerFrame;
}
ASSERT_TRUE(
es_parser.Parse(&stream_[cur_pes_offset], cur_pes_size, pts, dts));
}
es_parser.Flush();
}
TEST_F(EsParserH264Test, OneAccessUnitPerPes) {
LoadStream("bear.h264");
// One to one equivalence between PES packets and access units.
std::vector<Packet> pes_packets(access_units_);
// Process each PES packet.
ProcessPesPackets(pes_packets);
ASSERT_EQ(sample_count(), access_units_.size());
}
TEST_F(EsParserH264Test, NonAlignedPesPacket) {
LoadStream("bear.h264");
// Generate the PES packets.
std::vector<Packet> pes_packets;
Packet cur_pes_packet;
cur_pes_packet.offset = 0;
for (size_t k = 0; k < access_units_.size(); k++) {
pes_packets.push_back(cur_pes_packet);
// The current PES packet includes the remaining bytes of the previous
// access unit and some bytes of the current access unit
// (487 bytes in this unit test but no more than the current access unit
// size).
cur_pes_packet.offset = access_units_[k].offset +
std::min<size_t>(487u, access_units_[k].size);
}
ComputePacketSize(pes_packets, stream_.size());
// Process each PES packet.
ProcessPesPackets(pes_packets);
ASSERT_EQ(sample_count(), access_units_.size());
}
TEST_F(EsParserH264Test, SeveralPesPerAccessUnit) {
LoadStream("bear.h264");
// Get the minimum size of an access unit.
size_t min_access_unit_size = stream_.size();
for (size_t k = 0; k < access_units_.size(); k++) {
if (min_access_unit_size >= access_units_[k].size)
min_access_unit_size = access_units_[k].size;
}
// Use a small PES packet size or the minimum access unit size
// if it is even smaller.
size_t pes_size = 512;
if (min_access_unit_size < pes_size)
pes_size = min_access_unit_size;
std::vector<Packet> pes_packets;
Packet cur_pes_packet;
cur_pes_packet.offset = 0;
while (cur_pes_packet.offset < stream_.size()) {
pes_packets.push_back(cur_pes_packet);
cur_pes_packet.offset += pes_size;
}
ComputePacketSize(pes_packets, stream_.size());
// Process each PES packet.
ProcessPesPackets(pes_packets);
ASSERT_EQ(sample_count(), access_units_.size());
}
} // namespace mp2t
} // namespace media