Add TsWriter class

- Creates PAT and PMT from StreamInfo.
- Takes PES packets and write them to file.

Issue #84

Change-Id: Id0a95e66f126cc2b0fbb6b2169a391d64e49b06a
This commit is contained in:
Rintaro Kuroiwa 2016-03-20 17:04:54 -07:00
parent b7f457e368
commit 25a3fec213
5 changed files with 997 additions and 2 deletions

View File

@ -36,6 +36,8 @@
'ts_section_pmt.h',
'ts_section_psi.cc',
'ts_section_psi.h',
'ts_writer.cc',
'ts_writer.h',
],
'dependencies': [
'../../base/media_base.gyp:media_base',
@ -52,6 +54,7 @@
'es_parser_h264_unittest.cc',
'mp2t_media_parser_unittest.cc',
'pes_packet_generator_unittest.cc',
'ts_writer_unittest.cc',
],
'dependencies': [
'../../../testing/gtest.gyp:gtest',

View File

@ -28,9 +28,9 @@ class PesPacket {
void set_stream_id(uint8_t stream_id) { stream_id_ = stream_id; }
/// @return true if dts has been set.
bool has_dts() const { return dts_ < 0; }
bool has_dts() const { return dts_ >= 0; }
/// @return true if pts has been set.
bool has_pts() const { return pts_ < 0; }
bool has_pts() const { return pts_ >= 0; }
/// @return dts.
int64_t dts() const { return dts_; }

View File

@ -0,0 +1,484 @@
// Copyright 2016 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
#include "packager/media/formats/mp2t/ts_writer.h"
#include <algorithm>
#include "packager/base/logging.h"
#include "packager/media/base/audio_stream_info.h"
#include "packager/media/base/buffer_writer.h"
#include "packager/media/base/stream_info.h"
#include "packager/media/base/video_stream_info.h"
namespace edash_packager {
namespace media {
namespace mp2t {
namespace {
enum Pid : uint8_t {
// The pid can be 13 bits long but 8 bits is sufficient for this library.
// This is the minimum PID that can be used for PMT.
kPmtPid = 0x20,
// This is arbitrary number that is not reserved by the spec.
kElementaryPid = 0x50,
};
// Program number is 16 bits but 8 bits is sufficient.
const uint8_t kProgramNumber = 0x01;
const uint8_t kStreamTypeH264 = 0x1B;
const uint8_t kStreamTypeAdtsAac = 0x0F;
// For all the pointer fields in the following PAT and PMTs, they are not really
// part of PAT or PMT but it's there so that TsPacket can point to a memory
// location that starts from pointer field.
const uint8_t kProgramAssociationTableId = 0x00;
const uint8_t kProgramMapTableId = 0x02;
// TODO(rkuroiwa):
// Once encryption is added, another PAT must be used for the encrypted portion
// e.g. version number set to 1.
// But this works for clear lead and for clear segments.
// Write PSI generator.
const uint8_t kPat[] = {
0x00, // pointer field
kProgramAssociationTableId,
0xB0, // The last 2 '00' assumes that this PAT is not very long.
0x0D, // Length of the rest of this array.
0x00, 0x00, // Transport stream ID is 0.
0xC1, // version number 0, current next indicator 1.
0x00, // section number
0x00, // last section number
// program number -> PMT PID mapping.
0x00, 0x01, // program number is 1.
0xE0, // first 3 bits is reserved.
kPmtPid,
// CRC32.
0xAB, 0xB9, 0x9E, 0x9D,
};
// Like PAT, with encryption different PMTs are required.
// It might make sense to add a PmtGenerator class.
const uint8_t kPmtH264[] = {
0x00, // pointer field
kProgramMapTableId,
0xB0, // assumes length is <= 256 bytes.
0x12, // length of the rest of this array.
0x00, kProgramNumber,
0xC1, // version 0, current next indicator 1.
0x00, // section number
0x00, // last section number.
0xE0, // first 3 bits reserved.
kElementaryPid, // PCR PID is the elementary streams PID.
0xF0, // first 4 bits reserved.
0x00, // No descriptor at this level.
kStreamTypeH264, 0xE0, kElementaryPid, // stream_type -> PID.
0xF0, 0x00, // Es_info_length is 0.
// CRC32.
0x56, 0x90, 0xF4, 0xEB,
};
const uint8_t kPmtAac[] = {
0x00, // pointer field
0x02, // table id must be 0x02.
0xB0, // assumes length is <= 256 bytes.
0x12, // length of the rest of this array.
0x00, kProgramNumber,
0xC1, // version 0, current next indicator 1.
0x00, // section number
0x00, // last section number.
0xE0, // first 3 bits reserved.
kElementaryPid, // PCR PID is the elementary streams PID.
0xF0, // first 4 bits reserved.
0x00, // No descriptor at this level.
kStreamTypeAdtsAac, 0xE0, kElementaryPid, // stream_type -> PID.
0xF0, 0x00, // Es_info_length is 0.
// CRC32.
0xC3, 0xF0, 0xC5, 0xA9,
};
const bool kHasPcr = true;
const bool kPayloadUnitStartIndicator = true;
const uint8_t kSyncByte = 0x47;
const int kPcrFieldsSize = 6;
// This is the size of the first few fields in a TS packet, i.e. TS packet size
// without adaptation field or the payload.
const int kTsPacketHeaderSize = 4;
const int kTsPacketSize = 188;
const int kTsPacketMaximumPayloadSize =
kTsPacketSize - kTsPacketHeaderSize;
const size_t kMaxPesPacketLengthValue = 0xFFFF;
// Used for adaptation field padding bytes.
const uint8_t kPaddingBytes[] = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
};
static_assert(arraysize(kPaddingBytes) >= kTsPacketMaximumPayloadSize,
"Padding array is not big enough.");
// |remaining_data_size| is the amount of data that has to be written. This may
// be bigger than a TS packet size.
// |remaining_data_size| matters if it is short and requires padding.
void WriteAdaptationField(bool has_pcr,
uint64_t pcr_base,
size_t remaining_data_size,
BufferWriter* writer) {
// Special case where a TS packet requires 1 byte padding.
if (!has_pcr && remaining_data_size == kTsPacketMaximumPayloadSize - 1) {
writer->AppendInt(static_cast<uint8_t>(0));
return;
}
// The size of the field itself.
const int kAdaptationFieldLengthSize = 1;
// The size of all leading flags (not including the adaptation_field_length).
const int kAdaptationFieldHeaderSize = 1;
int adaptation_field_length =
kAdaptationFieldHeaderSize + (has_pcr ? kPcrFieldsSize : 0);
if (remaining_data_size < kTsPacketMaximumPayloadSize) {
const int current_ts_size = kTsPacketHeaderSize + remaining_data_size +
adaptation_field_length +
kAdaptationFieldLengthSize;
if (current_ts_size < kTsPacketSize) {
adaptation_field_length += kTsPacketSize - current_ts_size;
}
}
writer->AppendInt(static_cast<uint8_t>(adaptation_field_length));
int remaining_bytes = adaptation_field_length;
writer->AppendInt(static_cast<uint8_t>(
// All flags except PCR_flag are 0.
static_cast<uint8_t>(has_pcr) << 4));
remaining_bytes -= 1;
if (has_pcr) {
// program_clock_reference_extension = 0.
const uint32_t most_significant_32bits_pcr =
static_cast<uint32_t>(pcr_base >> 1);
const uint16_t pcr_last_bit_reserved_and_pcr_extension =
((pcr_base & 1) << 15);
writer->AppendInt(most_significant_32bits_pcr);
writer->AppendInt(pcr_last_bit_reserved_and_pcr_extension);
remaining_bytes -= kPcrFieldsSize;
}
DCHECK_GE(remaining_bytes, 0);
if (remaining_bytes == 0)
return;
DCHECK_GE(static_cast<int>(arraysize(kPaddingBytes)), remaining_bytes);
writer->AppendArray(kPaddingBytes, remaining_bytes);
}
// |payload| can be any payload. Most likely raw PSI tables or PES packet
// payload.
void WritePayloadToBufferWriter(const uint8_t* payload,
size_t payload_size,
bool payload_unit_start_indicator,
int pid,
bool has_pcr,
uint64_t pcr_base,
ContinuityCounter* continuity_counter,
BufferWriter* writer) {
size_t payload_bytes_written = 0;
do {
const bool must_write_adaptation_header = has_pcr;
const size_t bytes_left = payload_size - payload_bytes_written;
const bool has_adaptation_field = must_write_adaptation_header ||
bytes_left < kTsPacketMaximumPayloadSize;
writer->AppendInt(kSyncByte);
writer->AppendInt(static_cast<uint16_t>(
// transport_error_indicator and transport_priority are both '0'.
static_cast<int>(payload_unit_start_indicator) << 14 | pid));
const uint8_t adaptation_field_control =
((has_adaptation_field ? 1 : 0) << 1) | ((bytes_left != 0) ? 1 : 0);
// transport_scrambling_control is '00'.
writer->AppendInt(static_cast<uint8_t>(adaptation_field_control << 4 |
continuity_counter->GetNext()));
if (has_adaptation_field) {
const size_t before = writer->Size();
WriteAdaptationField(has_pcr, pcr_base, bytes_left, writer);
const size_t bytes_for_adaptation_field = writer->Size() - before;
const int write_bytes =
kTsPacketMaximumPayloadSize - bytes_for_adaptation_field;
writer->AppendArray(payload + payload_bytes_written, write_bytes);
payload_bytes_written += write_bytes;
} else {
writer->AppendArray(payload + payload_bytes_written,
kTsPacketMaximumPayloadSize);
payload_bytes_written += kTsPacketMaximumPayloadSize;
}
// Once written, not needed for this payload.
has_pcr = false;
payload_unit_start_indicator = false;
} while (payload_bytes_written < payload_size);
}
void WritePatPmtToBuffer(const uint8_t* data,
int data_size,
int pid,
ContinuityCounter* continuity_counter,
BufferWriter* writer) {
WritePayloadToBufferWriter(data, data_size, kPayloadUnitStartIndicator, pid,
!kHasPcr, 0, continuity_counter, writer);
}
void WritePatToBuffer(const uint8_t* pat,
int pat_size,
ContinuityCounter* continuity_counter,
BufferWriter* writer) {
const int kPatPid = 0;
WritePatPmtToBuffer(pat, pat_size, kPatPid, continuity_counter, writer);
}
void WritePmtToBuffer(const uint8_t* pmt,
int pmt_size,
ContinuityCounter* continuity_counter,
BufferWriter* writer) {
WritePatPmtToBuffer(pmt, pmt_size, kPmtPid, continuity_counter, writer);
}
// The only difference between writing PTS or DTS is the leading bits.
void WritePtsOrDts(uint8_t leading_bits,
uint64_t pts_or_dts,
BufferWriter* writer) {
// First byte has 3 MSB of PTS.
uint8_t first_byte =
leading_bits << 4 | (((pts_or_dts >> 30) & 0x07) << 1) | 1;
// Second byte has the next 8 bits of pts.
uint8_t second_byte = (pts_or_dts >> 22) & 0xFF;
// Third byte has the next 7 bits of pts followed by a marker bit.
uint8_t third_byte = (((pts_or_dts >> 15) & 0x7F) << 1) | 1;
// Fourth byte has the next 8 bits of pts.
uint8_t fourth_byte = ((pts_or_dts >> 7) & 0xFF);
// Fifth byte has the last 7 bits of pts followed by a marker bit.
uint8_t fifth_byte = ((pts_or_dts & 0x7F) << 1) | 1;
writer->AppendInt(first_byte);
writer->AppendInt(second_byte);
writer->AppendInt(third_byte);
writer->AppendInt(fourth_byte);
writer->AppendInt(fifth_byte);
}
bool WritePesToFile(const PesPacket& pes,
ContinuityCounter* continuity_counter,
File* file) {
// The size of the length field.
const int kAdaptationFieldLengthSize = 1;
// The size of the flags field.
const int kAdaptationFieldHeaderSize = 1;
const int kPcrFieldSize = 6;
const int kTsPacketMaxPayloadWithPcr =
kTsPacketMaximumPayloadSize - kAdaptationFieldLengthSize -
kAdaptationFieldHeaderSize - kPcrFieldSize;
const uint64_t pcr_base = pes.has_dts() ? pes.dts() : pes.pts();
const int pid = kElementaryPid;
// This writer will hold part of PES packet after PES_packet_length field.
BufferWriter pes_header_writer;
// The first bit must be '10' for PES with video or audio stream id. The other
// flags (bits) don't matter so they are 0.
pes_header_writer.AppendInt(static_cast<uint8_t>(0x80));
pes_header_writer.AppendInt(
static_cast<uint8_t>(static_cast<int>(pes.has_pts()) << 7 |
static_cast<int>(pes.has_dts()) << 6
// Other fields are all 0.
));
uint8_t pes_header_data_length = 0;
if (pes.has_pts())
pes_header_data_length += 5;
if (pes.has_dts())
pes_header_data_length += 5;
pes_header_writer.AppendInt(pes_header_data_length);
if (pes.has_pts() && pes.has_dts()) {
WritePtsOrDts(0x03, pes.pts(), &pes_header_writer);
WritePtsOrDts(0x01, pes.dts(), &pes_header_writer);
} else if (pes.has_pts()) {
WritePtsOrDts(0x02, pes.pts(), &pes_header_writer);
}
// Put the first TS packet's payload into a buffer. This contains the PES
// packet's header.
BufferWriter first_ts_packet_buffer(kTsPacketSize);
first_ts_packet_buffer.AppendNBytes(static_cast<uint64_t>(0x000001), 3);
first_ts_packet_buffer.AppendInt(pes.stream_id());
const size_t pes_packet_length = pes.data().size() + pes_header_writer.Size();
first_ts_packet_buffer.AppendInt(static_cast<uint16_t>(
pes_packet_length > kMaxPesPacketLengthValue ? 0 : pes_packet_length));
first_ts_packet_buffer.AppendBuffer(pes_header_writer);
const int available_payload =
kTsPacketMaxPayloadWithPcr - first_ts_packet_buffer.Size();
const int bytes_consumed =
std::min(static_cast<int>(pes.data().size()), available_payload);
first_ts_packet_buffer.AppendArray(pes.data().data(), bytes_consumed);
BufferWriter output_writer;
WritePayloadToBufferWriter(first_ts_packet_buffer.Buffer(),
first_ts_packet_buffer.Size(),
kPayloadUnitStartIndicator, pid, kHasPcr, pcr_base,
continuity_counter, &output_writer);
const size_t remaining_pes_data_size = pes.data().size() - bytes_consumed;
if (remaining_pes_data_size > 0) {
WritePayloadToBufferWriter(pes.data().data() + bytes_consumed,
remaining_pes_data_size,
!kPayloadUnitStartIndicator, pid, !kHasPcr, 0,
continuity_counter, &output_writer);
}
return output_writer.WriteToFile(file).ok();
}
} // namespace
ContinuityCounter::ContinuityCounter() {}
ContinuityCounter::~ContinuityCounter() {}
int ContinuityCounter::GetNext() {
int ret = counter_;
++counter_;
counter_ %= 16;
return ret;
}
TsWriter::TsWriter() {}
TsWriter::~TsWriter() {}
bool TsWriter::Initialize(const StreamInfo& stream_info) {
// This buffer will hold PMT data after section_length field so that this
// can be used to get the section_length.
time_scale_ = stream_info.time_scale();
if (time_scale_ == 0) {
LOG(ERROR) << "Timescale is 0.";
return false;
}
const StreamType stream_type = stream_info.stream_type();
if (stream_type != StreamType::kStreamVideo &&
stream_type != StreamType::kStreamAudio) {
LOG(ERROR) << "TsWriter cannot handle stream type " << stream_type
<< " yet.";
return false;
}
const uint8_t* pmt = nullptr;
size_t pmt_size = 0u;
if (stream_info.stream_type() == StreamType::kStreamVideo) {
const VideoStreamInfo& video_stream_info =
static_cast<const VideoStreamInfo&>(stream_info);
if (video_stream_info.codec() != VideoCodec::kCodecH264) {
LOG(ERROR) << "TsWriter cannot handle video codec "
<< video_stream_info.codec() << " yet.";
return false;
}
pmt = kPmtH264;
pmt_size = arraysize(kPmtH264);
} else {
DCHECK_EQ(stream_type, StreamType::kStreamAudio);
const AudioStreamInfo& audio_stream_info =
static_cast<const AudioStreamInfo&>(stream_info);
if (audio_stream_info.codec() != AudioCodec::kCodecAAC) {
LOG(ERROR) << "TsWriter cannot handle audio codec "
<< audio_stream_info.codec() << " yet.";
return false;
}
pmt = kPmtAac;
pmt_size = arraysize(kPmtAac);
}
DCHECK(pmt);
DCHECK_GT(pmt_size, 0u);
// Most likely going to fit in 2 TS packets.
BufferWriter psi_writer(kTsPacketSize * 2);
WritePatToBuffer(kPat, arraysize(kPat), &pat_continuity_counter_,
&psi_writer);
WritePmtToBuffer(pmt, pmt_size, &pmt_continuity_counter_, &psi_writer);
psi_writer.SwapBuffer(&psi_ts_packets_);
return true;
}
bool TsWriter::NewSegment(const std::string& file_name) {
DCHECK(!psi_ts_packets_.empty());
if (current_file_) {
LOG(ERROR) << "File " << current_file_->file_name() << " still open.";
return false;
}
current_file_.reset(File::Open(file_name.c_str(), "w"));
if (!current_file_) {
LOG(ERROR) << "Failed to open file " << file_name;
return false;
}
// TODO(kqyang): Add WriteArrayToFile().
BufferWriter psi_writer(psi_ts_packets_.size());
psi_writer.AppendVector(psi_ts_packets_);
if (!psi_writer.WriteToFile(current_file_.get()).ok()) {
LOG(ERROR) << "Failed to write PSI to file.";
return false;
}
return true;
}
bool TsWriter::FinalizeSegment() {
return current_file_.release()->Close();
}
bool TsWriter::AddPesPacket(scoped_ptr<PesPacket> pes_packet) {
if (time_scale_ == 0) {
LOG(ERROR) << "Timescale is 0.";
return false;
}
DCHECK(current_file_);
if (!WritePesToFile(*pes_packet, &elementary_stream_continuity_counter_,
current_file_.get())) {
LOG(ERROR) << "Failed to write pes to file.";
return false;
}
// No need to keep pes_packet around so not passing it anywhere.
return true;
}
} // namespace mp2t
} // namespace media
} // namespace edash_packager

View File

@ -0,0 +1,84 @@
// Copyright 2016 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
#ifndef PACKAGER_MEDIA_FORMATS_MP2T_TS_WRITER_H_
#define PACKAGER_MEDIA_FORMATS_MP2T_TS_WRITER_H_
#include <list>
#include <map>
#include <vector>
#include "packager/base/memory/scoped_ptr.h"
#include "packager/media/base/media_stream.h"
#include "packager/media/file/file.h"
#include "packager/media/file/file_closer.h"
#include "packager/media/formats/mp2t/pes_packet.h"
namespace edash_packager {
namespace media {
namespace mp2t {
class ContinuityCounter {
public:
ContinuityCounter();
~ContinuityCounter();
/// As specified by the spec, this starts from 0 and is incremented by 1 until
/// it wraps back to 0 when it reaches 16.
/// @return counter value.
int GetNext();
private:
int counter_ = 0;
DISALLOW_COPY_AND_ASSIGN(ContinuityCounter);
};
/// This class takes PesPackets, encapsulates them into TS packets, and write
/// the data to file. This also creates PSI from StreamInfo.
class TsWriter {
public:
TsWriter();
~TsWriter();
/// This must be called before calling other methods.
/// @return true on success, false otherwise.
bool Initialize(const StreamInfo& stream_info);
/// This will fail if the current segment is not finalized.
/// @param file_name is the output file name.
/// @return true on success, false otherwise.
bool NewSegment(const std::string& file_name);
/// Flush all the pending PesPackets that have not been written to file and
/// close the file.
/// @return true on success, false otherwise.
bool FinalizeSegment();
/// Add PesPacket to the instance. PesPacket might not get written to file
/// immediately.
/// @param pes_packet gets added to the writer.
/// @return true on success, false otherwise.
bool AddPesPacket(scoped_ptr<PesPacket> pes_packet);
private:
std::vector<uint8_t> psi_ts_packets_;
uint32_t time_scale_ = 0u;
ContinuityCounter pmt_continuity_counter_;
ContinuityCounter pat_continuity_counter_;
ContinuityCounter elementary_stream_continuity_counter_;
scoped_ptr<File, FileCloser> current_file_;
DISALLOW_COPY_AND_ASSIGN(TsWriter);
};
} // namespace mp2t
} // namespace media
} // namespace edash_packager
#endif // PACKAGER_MEDIA_FORMATS_MP2T_TS_WRITER_H_

View File

@ -0,0 +1,424 @@
// Copyright 2016 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
#include <gtest/gtest.h>
#include "packager/base/files/file_path.h"
#include "packager/base/files/file_util.h"
#include "packager/media/base/audio_stream_info.h"
#include "packager/media/base/video_stream_info.h"
#include "packager/media/formats/mp2t/pes_packet.h"
#include "packager/media/formats/mp2t/ts_writer.h"
namespace edash_packager {
namespace media {
namespace mp2t {
namespace {
const int kTsPacketSize = 188;
// Only {Audio,Video}Codec matter for this test. Other values are bogus.
const VideoCodec kH264VideoCodec = VideoCodec::kCodecH264;
const AudioCodec kAacAudioCodec = AudioCodec::kCodecAAC;
const int kTrackId = 0;
const uint32_t kTimeScale = 90000;
const uint64_t kDuration = 180000;
const char kCodecString[] = "avc1";
const char kLanguage[] = "eng";
const uint32_t kWidth = 1280;
const uint32_t kHeight = 720;
const uint32_t kPixelWidth = 1;
const uint32_t kPixelHeight = 1;
const uint16_t kTrickPlayRate = 1;
const uint8_t kNaluLengthSize = 1;
const bool kIsEncrypted = false;
const uint8_t kSampleBits = 16;
const uint8_t kNumChannels = 2;
const uint32_t kSamplingFrequency = 44100;
const uint32_t kMaxBitrate = 320000;
const uint32_t kAverageBitrate = 256000;
const uint8_t kExtraData[] = {
0x01, 0x02,
};
} // namespace
class TsWriterTest : public ::testing::Test {
protected:
// Using different file names for each test so that the tests can be run in
// parallel.
void SetUp() override {
base::CreateTemporaryFile(&test_file_path_);
// TODO(rkuroiwa): Use memory file prefix once its exposed.
test_file_name_ = kLocalFilePrefix + test_file_path_.value();
}
void TearDown() override {
const bool kRecursive = true;
base::DeleteFile(test_file_path_, !kRecursive);
}
bool ReadFileToVector(const base::FilePath& path, std::vector<uint8_t>* out) {
std::string content;
if (!base::ReadFileToString(path, &content))
return false;
out->assign(content.begin(), content.end());
return true;
}
// Checks whether |actual|'s prefix matches with |prefix| and the suffix
// matches with |suffix|. If there is padding, then padding_length specifies
// how long the padding is between prefix and suffix.
// |actual| must be at least 188 bytes long.
void ExpectTsPacketEqual(const uint8_t* prefix, size_t prefix_size,
int padding_length,
const uint8_t* suffix, size_t suffix_size,
const uint8_t* actual) {
std::vector<uint8_t> actual_prefix(actual, actual + prefix_size);
EXPECT_EQ(std::vector<uint8_t>(prefix, prefix + prefix_size),
actual_prefix);
// Padding until the payload.
for (size_t i = prefix_size; i < kTsPacketSize - suffix_size; ++i) {
EXPECT_EQ(0xFF, actual[i]) << "at index " << i;
}
std::vector<uint8_t> actual_suffix(actual + prefix_size + padding_length,
actual + kTsPacketSize);
EXPECT_EQ(std::vector<uint8_t>(suffix, suffix + suffix_size),
actual_suffix);
}
std::string test_file_name_;
TsWriter ts_writer_;
base::FilePath test_file_path_;
};
TEST_F(TsWriterTest, InitializeVideoH264) {
scoped_refptr<VideoStreamInfo> stream_info(new VideoStreamInfo(
kTrackId, kTimeScale, kDuration, kH264VideoCodec, kCodecString, kLanguage,
kWidth, kHeight, kPixelWidth, kPixelHeight, kTrickPlayRate,
kNaluLengthSize, kExtraData, arraysize(kExtraData), kIsEncrypted));
EXPECT_TRUE(ts_writer_.Initialize(*stream_info));
}
TEST_F(TsWriterTest, InitializeVideoNonH264) {
scoped_refptr<VideoStreamInfo> stream_info(new VideoStreamInfo(
kTrackId, kTimeScale, kDuration, VideoCodec::kCodecVP9, kCodecString,
kLanguage, kWidth, kHeight, kPixelWidth, kPixelHeight, kTrickPlayRate,
kNaluLengthSize, kExtraData, arraysize(kExtraData), kIsEncrypted));
EXPECT_FALSE(ts_writer_.Initialize(*stream_info));
}
TEST_F(TsWriterTest, InitializeAudioAac) {
scoped_refptr<AudioStreamInfo> stream_info(new AudioStreamInfo(
kTrackId, kTimeScale, kDuration, kAacAudioCodec, kCodecString, kLanguage,
kSampleBits, kNumChannels, kSamplingFrequency, kMaxBitrate,
kAverageBitrate, kExtraData, arraysize(kExtraData), kIsEncrypted));
EXPECT_TRUE(ts_writer_.Initialize(*stream_info));
}
TEST_F(TsWriterTest, InitializeAudioNonAac) {
scoped_refptr<AudioStreamInfo> stream_info(new AudioStreamInfo(
kTrackId, kTimeScale, kDuration, AudioCodec::kCodecOpus, kCodecString,
kLanguage, kSampleBits, kNumChannels, kSamplingFrequency, kMaxBitrate,
kAverageBitrate, kExtraData, arraysize(kExtraData), kIsEncrypted));
EXPECT_FALSE(ts_writer_.Initialize(*stream_info));
}
TEST_F(TsWriterTest, NewSegment) {
scoped_refptr<VideoStreamInfo> stream_info(new VideoStreamInfo(
kTrackId, kTimeScale, kDuration, kH264VideoCodec, kCodecString, kLanguage,
kWidth, kHeight, kPixelWidth, kPixelHeight, kTrickPlayRate,
kNaluLengthSize, kExtraData, arraysize(kExtraData), kIsEncrypted));
EXPECT_TRUE(ts_writer_.Initialize(*stream_info));
EXPECT_TRUE(ts_writer_.NewSegment(test_file_name_));
ASSERT_TRUE(ts_writer_.FinalizeSegment());
std::vector<uint8_t> content;
ASSERT_TRUE(ReadFileToVector(test_file_path_, &content));
// 2 TS Packets. PAT, PMT.
ASSERT_EQ(376u, content.size());
const uint8_t kExpectedPatPrefix[] = {
0x47, // Sync byte.
0x40, // payload_unit_start_indicator set.
0x00, // pid.
0x30, // Adaptation field and payload are both present. counter = 0.
0xA6, // Adaptation Field length.
0x00, // All adaptation field flags 0.
};
const int kExpectedPatPrefixSize = arraysize(kExpectedPatPrefix);
const uint8_t kExpectedPatPayload[] = {
0x00, // pointer field
0x00,
0xB0, // The last 2 '00' assumes that this PAT is not very long.
0x0D, // Length of the rest of this array.
0x00, 0x00, // Transport stream ID is 0.
0xC1, // version number 0, current next indicator 1.
0x00, // section number
0x00, // last section number
// program number -> PMT PID mapping.
0x00, 0x01, // program number is 1.
0xE0, // first 3 bits is reserved.
0x20, // PMT PID.
// CRC32.
0xAB, 0xB9, 0x9E, 0x9D,
};
EXPECT_NO_FATAL_FAILURE(ExpectTsPacketEqual(
kExpectedPatPrefix, kExpectedPatPrefixSize, 165, kExpectedPatPayload,
arraysize(kExpectedPatPayload), content.data()));
const uint8_t kExpectedPmtPrefix[] = {
0x47, // Sync byte.
0x40, // payload_unit_start_indicator set.
0x20, // pid.
0x30, // Adaptation field and payload are both present. counter = 0.
0xA1, // Adaptation Field length.
0x00, // All adaptation field flags 0.
};
const int kExpectedPmtPrefixSize = arraysize(kExpectedPmtPrefix);
const uint8_t kPmtH264[] = {
0x00, // pointer field
0x02,
0xB0, // assumes length is <= 256 bytes.
0x12, // length of the rest of this array.
0x00, 0x01,
0xC1, // version 0, current next indicator 1.
0x00, // section number
0x00, // last section number.
0xE0, // first 3 bits reserved.
0x50, // PCR PID is the elementary streams PID.
0xF0, // first 4 bits reserved.
0x00, // No descriptor at this level.
0x1B, 0xE0, 0x50, // stream_type -> PID.
0xF0, 0x00, // Es_info_length is 0.
// CRC32.
0x56, 0x90, 0xF4, 0xEB,
};
EXPECT_NO_FATAL_FAILURE(ExpectTsPacketEqual(
kExpectedPmtPrefix, kExpectedPmtPrefixSize, 160, kPmtH264,
arraysize(kPmtH264), content.data() + kTsPacketSize));
}
TEST_F(TsWriterTest, AddPesPacket) {
scoped_refptr<VideoStreamInfo> stream_info(new VideoStreamInfo(
kTrackId, kTimeScale, kDuration, kH264VideoCodec, kCodecString, kLanguage,
kWidth, kHeight, kPixelWidth, kPixelHeight, kTrickPlayRate,
kNaluLengthSize, kExtraData, arraysize(kExtraData), kIsEncrypted));
EXPECT_TRUE(ts_writer_.Initialize(*stream_info));
EXPECT_TRUE(ts_writer_.NewSegment(test_file_name_));
scoped_ptr<PesPacket> pes(new PesPacket());
pes->set_stream_id(0xE0);
pes->set_duration(99000);
pes->set_pts(0x900);
pes->set_dts(0x900);
const uint8_t kAnyData[] = {
0x12, 0x88, 0x4f, 0x4a,
};
pes->mutable_data()->assign(kAnyData, kAnyData + arraysize(kAnyData));
EXPECT_TRUE(ts_writer_.AddPesPacket(pes.Pass()));
ASSERT_TRUE(ts_writer_.FinalizeSegment());
std::vector<uint8_t> content;
ASSERT_TRUE(ReadFileToVector(test_file_path_, &content));
// 3 TS Packets. PAT, PMT, and PES.
ASSERT_EQ(564u, content.size());
const int kPesStartPosition = 376;
// Prefix of the expected output. Rest of the packet should be filled with
// padding.
const uint8_t kExpectedOutputPrefix[] = {
0x47, // Sync byte.
0x40, // payload_unit_start_indicator set.
0x50, // pid.
0x30, // Adaptation field and payload are both present. counter = 0.
0xA0, // Adaptation Field length.
0x10, // pcr flag.
0x00, 0x00, 0x04, 0x80, 0x00, 0x00, // PCR.
};
const uint8_t kExpectedPayload[] = {
0x00, 0x00, 0x01, // Start code.
0xE0, // stream id.
0x00, 0x11, // PES_packet_length.
0x80, // Flags.
0xC0, // PTS and DTS both present.
0x0A, // PES_header_data_length.
0x31, // Since PTS is 0 this is '0011' (fixed) and marker bit at LSB.
0x00, // PTS leading bits 0.
0x01, // PTS 0 followed by marker bit.
0x12, // PTS 0x900 shifted.
0x01, // PTS 0 followed by marker bit.
0x11, // Fixed '0001' followed by marker bit at LSB.
0x00, // DTS leading bits 0.
0x01, // DTS 0 followed by marker bit.
0x12, // DTS 0x900 shifted.
0x01, // DTS 0 followed by marker bit.
0x12, 0x88, 0x4f, 0x4a, // Payload.
};
EXPECT_NO_FATAL_FAILURE(ExpectTsPacketEqual(
kExpectedOutputPrefix, arraysize(kExpectedOutputPrefix), 153,
kExpectedPayload, arraysize(kExpectedPayload),
content.data() + kPesStartPosition));
}
// Verify that PES packet > 64KiB can be handled.
TEST_F(TsWriterTest, BigPesPacket) {
scoped_refptr<VideoStreamInfo> stream_info(new VideoStreamInfo(
kTrackId, kTimeScale, kDuration, kH264VideoCodec, kCodecString, kLanguage,
kWidth, kHeight, kPixelWidth, kPixelHeight, kTrickPlayRate,
kNaluLengthSize, kExtraData, arraysize(kExtraData), kIsEncrypted));
EXPECT_TRUE(ts_writer_.Initialize(*stream_info));
EXPECT_TRUE(ts_writer_.NewSegment(test_file_name_));
scoped_ptr<PesPacket> pes(new PesPacket());
pes->set_duration(99000);
pes->set_pts(0);
pes->set_dts(0);
// A little over 2 TS Packets (3 TS Packets).
const std::vector<uint8_t> big_data(400, 0x23);
*pes->mutable_data() = big_data;
EXPECT_TRUE(ts_writer_.AddPesPacket(pes.Pass()));
ASSERT_TRUE(ts_writer_.FinalizeSegment());
std::vector<uint8_t> content;
ASSERT_TRUE(ReadFileToVector(test_file_path_, &content));
// The first TsPacket can only carry
// 177 (TS packet size - header - adaptation_field) - 19 (PES header data) =
// 158 bytes of the PES packet payload.
// So this should create
// 2 + 1 + ceil((400 - 158) / 184) = 5 TsPackets.
// Where 184 is the maxium payload of a TS packet.
EXPECT_EQ(5u * 188, content.size());
// Check continuity counter.
EXPECT_EQ(0, (content[2 * 188 + 3] & 0xF));
EXPECT_EQ(1, (content[3 * 188 + 3] & 0xF));
EXPECT_EQ(2, (content[4 * 188 + 3] & 0xF));
}
// Bug found in code review. It should check whether PTS is present not whether
// PTS (implicilty) cast to bool is true.
TEST_F(TsWriterTest, PesPtsZeroNoDts) {
scoped_refptr<VideoStreamInfo> stream_info(new VideoStreamInfo(
kTrackId, kTimeScale, kDuration, kH264VideoCodec, kCodecString, kLanguage,
kWidth, kHeight, kPixelWidth, kPixelHeight, kTrickPlayRate,
kNaluLengthSize, kExtraData, arraysize(kExtraData), kIsEncrypted));
EXPECT_TRUE(ts_writer_.Initialize(*stream_info));
EXPECT_TRUE(ts_writer_.NewSegment(test_file_name_));
scoped_ptr<PesPacket> pes(new PesPacket());
pes->set_stream_id(0xE0);
pes->set_duration(99000);
pes->set_pts(0x0);
const uint8_t kAnyData[] = {
0x12, 0x88, 0x4F, 0x4A,
};
pes->mutable_data()->assign(kAnyData, kAnyData + arraysize(kAnyData));
EXPECT_TRUE(ts_writer_.AddPesPacket(pes.Pass()));
ASSERT_TRUE(ts_writer_.FinalizeSegment());
std::vector<uint8_t> content;
ASSERT_TRUE(ReadFileToVector(test_file_path_, &content));
// 3 TS Packets. PAT, PMT, and PES.
ASSERT_EQ(564u, content.size());
const int kPesStartPosition = 376;
// Prefix of the expected output. Rest of the packet should be filled with
// padding.
const uint8_t kExpectedOutputPrefix[] = {
0x47, // Sync byte.
0x40, // payload_unit_start_indicator set.
0x50, // pid.
0x30, // Adaptation field and payload are both present. counter = 0.
0xA5, // Adaptation Field length.
0x10, // pcr flag.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // PCR.
};
const uint8_t kExpectedPayload[] = {
0x00, 0x00, 0x01, // Start code.
0xE0, // stream id.
0x00, 0x0C, // PES_packet_length.
0x80, // Flags.
0x80, // Only PTS present.
0x05, // PES_header_data_length.
0x21, // Since PTS is 0 this is '0010' (fixed) and marker bit at LSB.
0x00, // PTS 0.
0x01, // PTS 0 followed by marker bit.
0x00, // PTS 0.
0x01, // PTS 0 followed by marker bit.
0x12, 0x88, 0x4F, 0x4A, // Payload.
};
EXPECT_NO_FATAL_FAILURE(ExpectTsPacketEqual(
kExpectedOutputPrefix, arraysize(kExpectedOutputPrefix), 158,
kExpectedPayload, arraysize(kExpectedPayload),
content.data() + kPesStartPosition));
}
// Verify that TS packet with payload 183 is handled correctly, e.g.
// adaptation_field_length should be 0.
TEST_F(TsWriterTest, TsPacketPayload183Bytes) {
scoped_refptr<VideoStreamInfo> stream_info(new VideoStreamInfo(
kTrackId, kTimeScale, kDuration, kH264VideoCodec, kCodecString, kLanguage,
kWidth, kHeight, kPixelWidth, kPixelHeight, kTrickPlayRate,
kNaluLengthSize, kExtraData, arraysize(kExtraData), kIsEncrypted));
EXPECT_TRUE(ts_writer_.Initialize(*stream_info));
EXPECT_TRUE(ts_writer_.NewSegment(test_file_name_));
scoped_ptr<PesPacket> pes(new PesPacket());
pes->set_stream_id(0xE0);
pes->set_pts(0x00);
pes->set_dts(0x00);
// Note that first TS packet will have adaptation fields with PCR, so make
// payload big enough so that second PES packet's payload is 183.
// First TS packet can carry 157 bytes of PES payload. The next one should
// carry 183 bytes.
std::vector<uint8_t> pes_payload(157 + 183, 0xAF);
*pes->mutable_data() = pes_payload;
EXPECT_TRUE(ts_writer_.AddPesPacket(pes.Pass()));
ASSERT_TRUE(ts_writer_.FinalizeSegment());
const uint8_t kExpectedOutputPrefix[] = {
0x47, // Sync byte.
0x00, // payload_unit_start_indicator set.
0x50, // pid.
0x31, // Adaptation field and payload are both present. counter = 0.
0x00, // Adaptation Field length, 1 byte padding.
};
std::vector<uint8_t> content;
ASSERT_TRUE(ReadFileToVector(test_file_path_, &content));
// 4 TsPackets. PAT, PMT, TsPacket with PES header, TsPacket rest of PES
// payload.
ASSERT_EQ(752u, content.size());
const int kPesStartPosition = 564;
std::vector<uint8_t> actual_prefix(content.data() + kPesStartPosition,
content.data() + kPesStartPosition + 5);
EXPECT_EQ(
std::vector<uint8_t>(kExpectedOutputPrefix, kExpectedOutputPrefix + 5),
actual_prefix);
}
} // namespace mp2t
} // namespace media
} // namespace edash_packager