Implement AES CBC encryption/decrytion.

Change-Id: I017b02b5e8fc64c280a8245b72be89e1cf047f26
This commit is contained in:
Kongqun Yang 2013-12-16 16:49:56 -08:00 committed by KongQun Yang
parent d36091cf65
commit 577f899794
3 changed files with 364 additions and 44 deletions

View File

@ -24,6 +24,11 @@ bool Increment64(uint8* counter) {
// 64-bit (8-byte) or 128-bit (16-byte). // 64-bit (8-byte) or 128-bit (16-byte).
bool IsIvSizeValid(size_t iv_size) { return iv_size == 8 || iv_size == 16; } bool IsIvSizeValid(size_t iv_size) { return iv_size == 8 || iv_size == 16; }
// AES defines three key sizes: 128, 192 and 256 bits.
bool IsKeySizeValidForAes(size_t key_size) {
return key_size == 16 || key_size == 24 || key_size == 32;
}
// CENC protection scheme uses 128-bit keys in counter mode. // CENC protection scheme uses 128-bit keys in counter mode.
const uint32 kCencKeySize = 16; const uint32 kCencKeySize = 16;
@ -43,8 +48,6 @@ AesCtrEncryptor::~AesCtrEncryptor() {}
bool AesCtrEncryptor::InitializeWithRandomIv(const std::vector<uint8>& key, bool AesCtrEncryptor::InitializeWithRandomIv(const std::vector<uint8>& key,
uint8 iv_size) { uint8 iv_size) {
CHECK(IsIvSizeValid(iv_size));
// TODO(kqyang): should we use RAND_bytes provided by openssl instead? // TODO(kqyang): should we use RAND_bytes provided by openssl instead?
std::vector<uint8> iv(iv_size, 0); std::vector<uint8> iv(iv_size, 0);
base::RandBytes(&iv[0], iv_size); base::RandBytes(&iv[0], iv_size);
@ -53,24 +56,26 @@ bool AesCtrEncryptor::InitializeWithRandomIv(const std::vector<uint8>& key,
bool AesCtrEncryptor::InitializeWithIv(const std::vector<uint8>& key, bool AesCtrEncryptor::InitializeWithIv(const std::vector<uint8>& key,
const std::vector<uint8>& iv) { const std::vector<uint8>& iv) {
CHECK_EQ(kCencKeySize, key.size()); if (key.size() != kCencKeySize) {
CHECK(IsIvSizeValid(iv.size())); LOG(ERROR) << "Invalid key size of " << key.size() << " for CENC.";
aes_key_.reset(new AES_KEY());
if (AES_set_encrypt_key(&key[0], AES_BLOCK_SIZE * 8, aes_key_.get()) != 0) {
aes_key_.reset();
LOG(ERROR) << "Failed to setup encryption key.";
return false; return false;
} }
SetIv(iv); if (!IsIvSizeValid(iv.size())) {
return true; LOG(ERROR) << "Invalid IV size: " << iv.size();
return false;
}
aes_key_.reset(new AES_KEY());
CHECK_EQ(AES_set_encrypt_key(&key[0], AES_BLOCK_SIZE * 8, aes_key_.get()), 0);
return SetIv(iv);
} }
bool AesCtrEncryptor::Encrypt(const uint8* plaintext, bool AesCtrEncryptor::Encrypt(const uint8* plaintext,
size_t plaintext_size, size_t plaintext_size,
uint8* ciphertext) { uint8* ciphertext) {
DCHECK(plaintext != NULL && plaintext_size > 0 && ciphertext != NULL); DCHECK(plaintext);
DCHECK(aes_key_ != NULL); DCHECK(ciphertext);
DCHECK(aes_key_);
for (size_t i = 0; i < plaintext_size; ++i) { for (size_t i = 0; i < plaintext_size; ++i) {
if (block_offset_ == 0) { if (block_offset_ == 0) {
@ -118,11 +123,128 @@ void AesCtrEncryptor::UpdateIv() {
counter_overflow_ = false; counter_overflow_ = false;
} }
void AesCtrEncryptor::SetIv(const std::vector<uint8>& iv) { bool AesCtrEncryptor::SetIv(const std::vector<uint8>& iv) {
CHECK(IsIvSizeValid(iv.size())); if (!IsIvSizeValid(iv.size())) {
LOG(ERROR) << "Invalid IV size: " << iv.size();
return false;
}
block_offset_ = 0; block_offset_ = 0;
counter_ = iv_ = iv; counter_ = iv_ = iv;
counter_.resize(AES_BLOCK_SIZE, 0); counter_.resize(AES_BLOCK_SIZE, 0);
return true;
} }
} // namespace AesCbcEncryptor::AesCbcEncryptor() {}
AesCbcEncryptor::~AesCbcEncryptor() {}
bool AesCbcEncryptor::InitializeWithIv(const std::vector<uint8>& key,
const std::vector<uint8>& iv) {
if (!IsKeySizeValidForAes(key.size())) {
LOG(ERROR) << "Invalid AES key size: " << key.size();
return false;
}
if (iv.size() != AES_BLOCK_SIZE) {
LOG(ERROR) << "Invalid IV size: " << iv.size();
return false;
}
encrypt_key_.reset(new AES_KEY());
CHECK_EQ(AES_set_encrypt_key(&key[0], key.size() * 8, encrypt_key_.get()), 0);
iv_ = iv;
return true;
}
void AesCbcEncryptor::Encrypt(const std::string& plaintext,
std::string* ciphertext) {
DCHECK(ciphertext);
DCHECK(encrypt_key_);
// Pad the input with PKCS5 padding.
const size_t num_padding_bytes =
AES_BLOCK_SIZE - (plaintext.size() % AES_BLOCK_SIZE);
std::string padded_text = plaintext;
padded_text.append(num_padding_bytes, static_cast<char>(num_padding_bytes));
ciphertext->resize(padded_text.size());
AES_cbc_encrypt(reinterpret_cast<const uint8*>(padded_text.data()),
reinterpret_cast<uint8*>(string_as_array(ciphertext)),
padded_text.size(),
encrypt_key_.get(),
&iv_[0],
AES_ENCRYPT);
}
bool AesCbcEncryptor::SetIv(const std::vector<uint8>& iv) {
if (iv.size() != AES_BLOCK_SIZE) {
LOG(ERROR) << "Invalid IV size: " << iv.size();
return false;
}
iv_ = iv;
return true;
}
AesCbcDecryptor::AesCbcDecryptor() {}
AesCbcDecryptor::~AesCbcDecryptor() {}
bool AesCbcDecryptor::InitializeWithIv(const std::vector<uint8>& key,
const std::vector<uint8>& iv) {
if (!IsKeySizeValidForAes(key.size())) {
LOG(ERROR) << "Invalid AES key size: " << key.size();
return false;
}
if (iv.size() != AES_BLOCK_SIZE) {
LOG(ERROR) << "Invalid IV size: " << iv.size();
return false;
}
decrypt_key_.reset(new AES_KEY());
CHECK_EQ(AES_set_decrypt_key(&key[0], key.size() * 8, decrypt_key_.get()), 0);
iv_ = iv;
return true;
}
bool AesCbcDecryptor::Decrypt(const std::string& ciphertext,
std::string* plaintext) {
if ((ciphertext.size() % AES_BLOCK_SIZE) != 0) {
LOG(ERROR) << "Expecting cipher text size to be multiple of "
<< AES_BLOCK_SIZE << ", got " << ciphertext.size();
return false;
}
DCHECK(plaintext);
DCHECK(decrypt_key_);
plaintext->resize(ciphertext.size());
AES_cbc_encrypt(reinterpret_cast<const uint8*>(ciphertext.data()),
reinterpret_cast<uint8*>(string_as_array(plaintext)),
ciphertext.size(),
decrypt_key_.get(),
&iv_[0],
AES_DECRYPT);
// Strip off PKCS5 padding bytes.
const uint8 num_padding_bytes = (*plaintext)[plaintext->size() - 1];
if (num_padding_bytes > AES_BLOCK_SIZE) {
LOG(ERROR) << "Padding length is too large : "
<< static_cast<int>(num_padding_bytes);
return false;
}
plaintext->resize(plaintext->size() - num_padding_bytes);
return true;
}
bool AesCbcDecryptor::SetIv(const std::vector<uint8>& iv) {
if (iv.size() != AES_BLOCK_SIZE) {
LOG(ERROR) << "Invalid IV size: " << iv.size();
return false;
}
iv_ = iv;
return true;
}
} // namespace media

View File

@ -11,6 +11,7 @@
#include <vector> #include <vector>
#include "base/memory/scoped_ptr.h" #include "base/memory/scoped_ptr.h"
#include "base/stl_util.h"
struct aes_key_st; struct aes_key_st;
typedef struct aes_key_st AES_KEY; typedef struct aes_key_st AES_KEY;
@ -23,12 +24,15 @@ class AesCtrEncryptor {
~AesCtrEncryptor(); ~AesCtrEncryptor();
// Initialize the encryptor with specified key. A random iv will be generated. // Initialize the encryptor with specified key. A random iv will be generated.
// |key| size should be 16. |iv_size| should be either 8 or 16. // Return false if either the key or the initialization vector cannot be
// used. A valid |key| should be 16 bytes in size. A valid |iv_size| should be
// either 8 or 16.
// |block_offset_| is set to 0. // |block_offset_| is set to 0.
bool InitializeWithRandomIv(const std::vector<uint8>& key, uint8 iv_size); bool InitializeWithRandomIv(const std::vector<uint8>& key, uint8 iv_size);
// Initialize the encryptor with specified key and iv. // Initialize the encryptor with specified key and iv. Return false if either
// |key| size should be 16. |iv| size should be either 8 or 16. // the key or the initialization vector cannot be used. A valid |key| should
// be 16 bytes in size. A valid |iv| should be 8 bytes or 16 bytes in size.
// |block_offset_| is set to 0. // |block_offset_| is set to 0.
bool InitializeWithIv(const std::vector<uint8>& key, bool InitializeWithIv(const std::vector<uint8>& key,
const std::vector<uint8>& iv); const std::vector<uint8>& iv);
@ -49,7 +53,7 @@ class AesCtrEncryptor {
ciphertext->resize(plaintext.size()); ciphertext->resize(plaintext.size());
return Encrypt(reinterpret_cast<const uint8*>(plaintext.data()), return Encrypt(reinterpret_cast<const uint8*>(plaintext.data()),
plaintext.size(), plaintext.size(),
reinterpret_cast<uint8*>(&(*ciphertext)[0])); reinterpret_cast<uint8*>(string_as_array(ciphertext)));
} }
// For AES CTR, encryption and decryption are identical. // For AES CTR, encryption and decryption are identical.
@ -74,8 +78,8 @@ class AesCtrEncryptor {
// For 128-bit IV size, new_iv = old_iv + previous_sample_block_count. // For 128-bit IV size, new_iv = old_iv + previous_sample_block_count.
void UpdateIv(); void UpdateIv();
// Set IV. |block_offset_| is reset to 0. // Set IV. |block_offset_| is reset to 0. Return false if |iv| is invalid.
void SetIv(const std::vector<uint8>& iv); bool SetIv(const std::vector<uint8>& iv);
const std::vector<uint8>& iv() const { return iv_; } const std::vector<uint8>& iv() const { return iv_; }
@ -98,7 +102,59 @@ class AesCtrEncryptor {
DISALLOW_COPY_AND_ASSIGN(AesCtrEncryptor); DISALLOW_COPY_AND_ASSIGN(AesCtrEncryptor);
}; };
// TODO(kqyang): implement AesCbcEncryptor. class AesCbcEncryptor {
public:
AesCbcEncryptor();
~AesCbcEncryptor();
// Initialize the encryptor with specified key and iv.
// Return false if either the key or the initialization vector cannot be used.
// A valid |key| should be 128 bits or 192 bits or 256 bits in size as defined
// in AES. A valid |iv| should be 16 bytes in size.
bool InitializeWithIv(const std::vector<uint8>& key,
const std::vector<uint8>& iv);
// |plaintext| will be PKCS5 padded before being encrypted.
void Encrypt(const std::string& plaintext, std::string* ciphertext);
// Set IV. Return false if |iv| is invalid.
bool SetIv(const std::vector<uint8>& iv);
const std::vector<uint8>& iv() const { return iv_; }
private:
std::vector<uint8> iv_;
scoped_ptr<AES_KEY> encrypt_key_;
DISALLOW_COPY_AND_ASSIGN(AesCbcEncryptor);
};
class AesCbcDecryptor {
public:
AesCbcDecryptor();
~AesCbcDecryptor();
// Initialize the decryptor with specified key and iv.
// Return false if either the key or the initialization vector cannot be used.
// A valid |key| should be 128 bits or 192 bits or 256 bits in size as defined
// in AES. A valid |iv| should be 16 bytes in size.
bool InitializeWithIv(const std::vector<uint8>& key,
const std::vector<uint8>& iv);
// We expect |ciphertext| generated with PKCS5 padding. Return false it not.
bool Decrypt(const std::string& ciphertext, std::string* plaintext);
// Set IV. Return false if |iv| is invalid.
bool SetIv(const std::vector<uint8>& iv);
const std::vector<uint8>& iv() const { return iv_; }
private:
std::vector<uint8> iv_;
scoped_ptr<AES_KEY> decrypt_key_;
DISALLOW_COPY_AND_ASSIGN(AesCbcDecryptor);
};
} // namespace } // namespace

View File

@ -76,7 +76,7 @@ const SubsampleTestCase kSubsampleTestCases[] = {
{kSubsampleTest7, arraysize(kSubsampleTest7)}, {kSubsampleTest7, arraysize(kSubsampleTest7)},
{kSubsampleTest8, arraysize(kSubsampleTest8)}, {kSubsampleTest8, arraysize(kSubsampleTest8)},
{kSubsampleTest9, arraysize(kSubsampleTest9)}, {kSubsampleTest9, arraysize(kSubsampleTest9)},
{kSubsampleTest10, arraysize(kSubsampleTest10)}, }; {kSubsampleTest10, arraysize(kSubsampleTest10)}};
// IV test values. // IV test values.
const uint32 kTextSizeInBytes = 60; // 3 full blocks + 1 partial block. const uint32 kTextSizeInBytes = 60; // 3 full blocks + 1 partial block.
@ -116,21 +116,21 @@ const IvTestCase kIvTestCases[] = {
{kIv128MaxMinusOne, arraysize(kIv128MaxMinusOne), kIv128Two}, {kIv128MaxMinusOne, arraysize(kIv128MaxMinusOne), kIv128Two},
{kIv64Zero, arraysize(kIv64Zero), kIv64One}, {kIv64Zero, arraysize(kIv64Zero), kIv64One},
{kIv64MaxMinusOne, arraysize(kIv64MaxMinusOne), kIv64Max}, {kIv64MaxMinusOne, arraysize(kIv64MaxMinusOne), kIv64Max},
{kIv64Max, arraysize(kIv64Max), kIv64Zero}, }; {kIv64Max, arraysize(kIv64Max), kIv64Zero}};
// We support AES 128, i.e. 16 bytes key only. // We support AES 128, i.e. 16 bytes key only.
const uint8 kInvalidKey[] = {0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, const uint8 kInvalidKey[] = {0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2,
0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, }; 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09};
// We support Iv of size 8 or 16 only as defined in CENC spec. // We support Iv of size 8 or 16 only as defined in CENC spec.
const uint8 kInvalidIv[] = {0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, const uint8 kInvalidIv[] = {0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, }; 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe};
} // namespace } // namespace
namespace media { namespace media {
class AesEncryptorTest : public testing::Test { class AesCtrEncryptorTest : public testing::Test {
public: public:
virtual void SetUp() { virtual void SetUp() {
key_.assign(kAesCtrKey, kAesCtrKey + arraysize(kAesCtrKey)); key_.assign(kAesCtrKey, kAesCtrKey + arraysize(kAesCtrKey));
@ -151,28 +151,28 @@ class AesEncryptorTest : public testing::Test {
AesCtrEncryptor encryptor_; AesCtrEncryptor encryptor_;
}; };
TEST_F(AesEncryptorTest, NistTestCase) { TEST_F(AesCtrEncryptorTest, NistTestCase) {
std::vector<uint8> encrypted; std::vector<uint8> encrypted;
EXPECT_TRUE(encryptor_.Encrypt(plaintext_, &encrypted)); EXPECT_TRUE(encryptor_.Encrypt(plaintext_, &encrypted));
EXPECT_EQ(ciphertext_, encrypted); EXPECT_EQ(ciphertext_, encrypted);
encryptor_.SetIv(iv_); EXPECT_TRUE(encryptor_.SetIv(iv_));
std::vector<uint8> decrypted; std::vector<uint8> decrypted;
EXPECT_TRUE(encryptor_.Decrypt(encrypted, &decrypted)); EXPECT_TRUE(encryptor_.Decrypt(encrypted, &decrypted));
EXPECT_EQ(plaintext_, decrypted); EXPECT_EQ(plaintext_, decrypted);
} }
TEST_F(AesEncryptorTest, NistTestCaseInplaceEncryptionDecryption) { TEST_F(AesCtrEncryptorTest, NistTestCaseInplaceEncryptionDecryption) {
std::vector<uint8> buffer = plaintext_; std::vector<uint8> buffer = plaintext_;
EXPECT_TRUE(encryptor_.Encrypt(&buffer[0], buffer.size(), &buffer[0])); EXPECT_TRUE(encryptor_.Encrypt(&buffer[0], buffer.size(), &buffer[0]));
EXPECT_EQ(ciphertext_, buffer); EXPECT_EQ(ciphertext_, buffer);
encryptor_.SetIv(iv_); EXPECT_TRUE(encryptor_.SetIv(iv_));
EXPECT_TRUE(encryptor_.Decrypt(&buffer[0], buffer.size(), &buffer[0])); EXPECT_TRUE(encryptor_.Decrypt(&buffer[0], buffer.size(), &buffer[0]));
EXPECT_EQ(plaintext_, buffer); EXPECT_EQ(plaintext_, buffer);
} }
TEST_F(AesEncryptorTest, EncryptDecryptString) { TEST_F(AesCtrEncryptorTest, EncryptDecryptString) {
static const char kPlaintext[] = "normal plaintext of random length"; static const char kPlaintext[] = "normal plaintext of random length";
static const char kExpectedCiphertextInHex[] = static const char kExpectedCiphertextInHex[] =
"82E3AD1EF90C5CC09EB37F1B9EFBD99016441A1C15123F0777CD57BB993E14DA02"; "82E3AD1EF90C5CC09EB37F1B9EFBD99016441A1C15123F0777CD57BB993E14DA02";
@ -183,12 +183,12 @@ TEST_F(AesEncryptorTest, EncryptDecryptString) {
base::HexEncode(ciphertext.data(), ciphertext.size())); base::HexEncode(ciphertext.data(), ciphertext.size()));
std::string decrypted; std::string decrypted;
encryptor_.SetIv(iv_); EXPECT_TRUE(encryptor_.SetIv(iv_));
EXPECT_TRUE(encryptor_.Decrypt(ciphertext, &decrypted)); EXPECT_TRUE(encryptor_.Decrypt(ciphertext, &decrypted));
EXPECT_EQ(kPlaintext, decrypted); EXPECT_EQ(kPlaintext, decrypted);
} }
TEST_F(AesEncryptorTest, 128BitIVBoundaryCaseEncryption) { TEST_F(AesCtrEncryptorTest, 128BitIVBoundaryCaseEncryption) {
// There are four blocks of text in |plaintext_|. The first block should be // There are four blocks of text in |plaintext_|. The first block should be
// encrypted with IV = kIv128Max64, the subsequent blocks should be encrypted // encrypted with IV = kIv128Max64, the subsequent blocks should be encrypted
// with iv 0 to 3. // with iv 0 to 3.
@ -215,7 +215,7 @@ TEST_F(AesEncryptorTest, 128BitIVBoundaryCaseEncryption) {
EXPECT_EQ(encrypted, encrypted_verify); EXPECT_EQ(encrypted, encrypted_verify);
} }
TEST_F(AesEncryptorTest, InitWithRandomIv) { TEST_F(AesCtrEncryptorTest, InitWithRandomIv) {
const uint8 kIvSize = 8; const uint8 kIvSize = 8;
ASSERT_TRUE(encryptor_.InitializeWithRandomIv(key_, kIvSize)); ASSERT_TRUE(encryptor_.InitializeWithRandomIv(key_, kIvSize));
ASSERT_EQ(kIvSize, encryptor_.iv().size()); ASSERT_EQ(kIvSize, encryptor_.iv().size());
@ -223,22 +223,22 @@ TEST_F(AesEncryptorTest, InitWithRandomIv) {
encryptor_.iv().size()); encryptor_.iv().size());
} }
TEST_F(AesEncryptorTest, UnsupportedKeySize) { TEST_F(AesCtrEncryptorTest, UnsupportedKeySize) {
std::vector<uint8> key(kInvalidKey, kInvalidKey + arraysize(kInvalidKey)); std::vector<uint8> key(kInvalidKey, kInvalidKey + arraysize(kInvalidKey));
ASSERT_DEATH(encryptor_.InitializeWithIv(key, iv_), ""); ASSERT_FALSE(encryptor_.InitializeWithIv(key, iv_));
} }
TEST_F(AesEncryptorTest, UnsupportedIV) { TEST_F(AesCtrEncryptorTest, UnsupportedIV) {
std::vector<uint8> iv(kInvalidIv, kInvalidIv + arraysize(kInvalidIv)); std::vector<uint8> iv(kInvalidIv, kInvalidIv + arraysize(kInvalidIv));
ASSERT_DEATH(encryptor_.InitializeWithIv(key_, iv), ""); ASSERT_FALSE(encryptor_.InitializeWithIv(key_, iv));
} }
TEST_F(AesEncryptorTest, IncorrectIvSize) { TEST_F(AesCtrEncryptorTest, IncorrectIvSize) {
ASSERT_DEATH(encryptor_.InitializeWithRandomIv(key_, 15), ""); ASSERT_FALSE(encryptor_.InitializeWithRandomIv(key_, 15));
} }
class AesCtrEncryptorSubsampleTest class AesCtrEncryptorSubsampleTest
: public AesEncryptorTest, : public AesCtrEncryptorTest,
public ::testing::WithParamInterface<SubsampleTestCase> {}; public ::testing::WithParamInterface<SubsampleTestCase> {};
TEST_P(AesCtrEncryptorSubsampleTest, NistTestCaseSubsamples) { TEST_P(AesCtrEncryptorSubsampleTest, NistTestCaseSubsamples) {
@ -254,7 +254,7 @@ TEST_P(AesCtrEncryptorSubsampleTest, NistTestCaseSubsamples) {
} }
EXPECT_EQ(ciphertext_, encrypted); EXPECT_EQ(ciphertext_, encrypted);
encryptor_.SetIv(iv_); EXPECT_TRUE(encryptor_.SetIv(iv_));
std::vector<uint8> decrypted(encrypted.size(), 0); std::vector<uint8> decrypted(encrypted.size(), 0);
for (uint32 i = 0, offset = 0; i < test_case->subsample_count; ++i) { for (uint32 i = 0, offset = 0; i < test_case->subsample_count; ++i) {
uint32 len = test_case->subsample_sizes[i]; uint32 len = test_case->subsample_sizes[i];
@ -295,4 +295,146 @@ INSTANTIATE_TEST_CASE_P(IvTestCases,
AesCtrEncryptorIvTest, AesCtrEncryptorIvTest,
::testing::ValuesIn(kIvTestCases)); ::testing::ValuesIn(kIvTestCases));
class AesCbcEncryptorTestEncryptionDecryption : public testing::Test {
public:
void TestEncryptionDecryption(const std::vector<uint8>& key,
const std::vector<uint8>& iv,
const std::string& plaintext,
const std::string& expected_ciphertext_hex) {
AesCbcEncryptor encryptor;
EXPECT_TRUE(encryptor.InitializeWithIv(key, iv));
std::string ciphertext;
encryptor.Encrypt(plaintext, &ciphertext);
EXPECT_EQ(expected_ciphertext_hex,
base::HexEncode(ciphertext.data(), ciphertext.size()));
AesCbcDecryptor decryptor;
ASSERT_TRUE(decryptor.InitializeWithIv(key, iv));
std::string decrypted;
EXPECT_TRUE(decryptor.Decrypt(ciphertext, &decrypted));
EXPECT_EQ(plaintext, decrypted);
}
};
TEST_F(AesCbcEncryptorTestEncryptionDecryption, EncryptAES256CBC) {
// NIST SP 800-38A test vector F.2.5 CBC-AES256.Encrypt.
static const uint8 kAesCbcKey[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae,
0xf0, 0x85, 0x7d, 0x77, 0x81, 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61,
0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4};
static const uint8 kAesCbcIv[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05,
0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,
0x0c, 0x0d, 0x0e, 0x0f};
static const uint8 kAesCbcPlaintext[] = {
// Block #1
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
// Block #2
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
// Block #3
0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,
0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
// Block #4
0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17,
0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10};
static const uint8 kAesCbcCiphertext[] = {
// Block #1
0xf5, 0x8c, 0x4c, 0x04, 0xd6, 0xe5, 0xf1, 0xba,
0x77, 0x9e, 0xab, 0xfb, 0x5f, 0x7b, 0xfb, 0xd6,
// Block #2
0x9c, 0xfc, 0x4e, 0x96, 0x7e, 0xdb, 0x80, 0x8d,
0x67, 0x9f, 0x77, 0x7b, 0xc6, 0x70, 0x2c, 0x7d,
// Block #3
0x39, 0xf2, 0x33, 0x69, 0xa9, 0xd9, 0xba, 0xcf,
0xa5, 0x30, 0xe2, 0x63, 0x04, 0x23, 0x14, 0x61,
// Block #4
0xb2, 0xeb, 0x05, 0xe2, 0xc3, 0x9b, 0xe9, 0xfc,
0xda, 0x6c, 0x19, 0x07, 0x8c, 0x6a, 0x9d, 0x1b,
// PKCS #5 padding, encrypted.
0x3f, 0x46, 0x17, 0x96, 0xd6, 0xb0, 0xd6, 0xb2,
0xe0, 0xc2, 0xa7, 0x2b, 0x4d, 0x80, 0xe6, 0x44};
const std::vector<uint8> key(kAesCbcKey, kAesCbcKey + arraysize(kAesCbcKey));
const std::vector<uint8> iv(kAesCbcIv, kAesCbcIv + arraysize(kAesCbcIv));
const std::string plaintext(reinterpret_cast<const char*>(kAesCbcPlaintext),
sizeof(kAesCbcPlaintext));
const std::string expected_ciphertext_hex =
base::HexEncode(kAesCbcCiphertext, sizeof(kAesCbcCiphertext));
TestEncryptionDecryption(key, iv, plaintext, expected_ciphertext_hex);
}
TEST_F(AesCbcEncryptorTestEncryptionDecryption, EncryptAES128CBCRegression) {
const std::string kKey = "128=SixteenBytes";
const std::string kIv = "Sweet Sixteen IV";
const std::string kPlaintext =
"Plain text with a g-clef U+1D11E \360\235\204\236";
const std::string kExpectedCiphertextHex =
"D4A67A0BA33C30F207344D81D1E944BBE65587C3D7D9939A"
"C070C62B9C15A3EA312EA4AD1BC7929F4D3C16B03AD5ADA8";
const std::vector<uint8> key(kKey.begin(), kKey.end());
const std::vector<uint8> iv(kIv.begin(), kIv.end());
TestEncryptionDecryption(key, iv, kPlaintext, kExpectedCiphertextHex);
}
TEST_F(AesCbcEncryptorTestEncryptionDecryption, EncryptAES192CBCRegression) {
const std::string kKey = "192bitsIsTwentyFourByte!";
const std::string kIv = "Sweet Sixteen IV";
const std::string kPlaintext = "Small text";
const std::string kExpectedCiphertextHex = "78DE5D7C2714FC5C61346C5416F6C89A";
const std::vector<uint8> key(kKey.begin(), kKey.end());
const std::vector<uint8> iv(kIv.begin(), kIv.end());
TestEncryptionDecryption(key, iv, kPlaintext, kExpectedCiphertextHex);
}
class AesCbcEncryptorTest : public testing::Test {
public:
virtual void SetUp() {
const std::string kKey = "128=SixteenBytes";
const std::string kIv = "Sweet Sixteen IV";
key_.assign(kKey.begin(), kKey.end());
iv_.assign(kIv.begin(), kIv.end());
}
protected:
std::vector<uint8> key_;
std::vector<uint8> iv_;
};
TEST_F(AesCbcEncryptorTest, UnsupportedKeySize) {
AesCbcEncryptor encryptor;
EXPECT_FALSE(encryptor.InitializeWithIv(std::vector<uint8>(15, 0), iv_));
}
TEST_F(AesCbcEncryptorTest, UnsupportedIvSize) {
AesCbcEncryptor encryptor;
EXPECT_FALSE(encryptor.InitializeWithIv(key_, std::vector<uint8>(14, 0)));
}
TEST_F(AesCbcEncryptorTest, EmptyEncrypt) {
AesCbcEncryptor encryptor;
ASSERT_TRUE(encryptor.InitializeWithIv(key_, iv_));
std::string ciphertext;
std::string expected_ciphertext_hex = "8518B8878D34E7185E300D0FCC426396";
encryptor.Encrypt("", &ciphertext);
EXPECT_EQ(expected_ciphertext_hex,
base::HexEncode(ciphertext.data(), ciphertext.size()));
}
TEST_F(AesCbcEncryptorTest, CipherTextNotMultipleOfBlockSize) {
AesCbcDecryptor decryptor;
ASSERT_TRUE(decryptor.InitializeWithIv(key_, iv_));
std::string plaintext;
EXPECT_FALSE(decryptor.Decrypt("1", &plaintext));
}
} // namespace media } // namespace media