Implemented FixedEncryptorSource.

FixedEncryptorSource takes hardcoded key id and content key.
Implemented an AES Encryptor using OpenSSL.

Change-Id: I59ba9a41fc0f40925d697045dd1b147b7351c2f9
This commit is contained in:
Kongqun Yang 2013-11-12 12:34:58 -08:00
parent 855ab753c0
commit e9b77add23
7 changed files with 687 additions and 5 deletions

128
media/base/aes_encryptor.cc Normal file
View File

@ -0,0 +1,128 @@
// Copyright (c) 2013 Google Inc. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/base/aes_encryptor.h"
#include <openssl/aes.h>
#include "base/logging.h"
#include "base/rand_util.h"
namespace {
// Increment an 8-byte counter by 1. Return true if overflowed.
bool Increment64(uint8* counter) {
DCHECK(counter);
for (int i = 7; i >= 0; --i)
if (++counter[i] != 0)
return false;
return true;
}
// According to ISO/IEC FDIS 23001-7: CENC spec, IV should be either
// 64-bit (8-byte) or 128-bit (16-byte).
bool IsIvSizeValid(size_t iv_size) { return iv_size == 8 || iv_size == 16; }
// CENC protection scheme uses 128-bit keys in counter mode.
const uint32 kCencKeySize = 16;
} // namespace
namespace media {
AesCtrEncryptor::AesCtrEncryptor()
: block_offset_(0),
encrypted_counter_(AES_BLOCK_SIZE, 0),
counter_overflow_(false) {
COMPILE_ASSERT(AES_BLOCK_SIZE == kCencKeySize,
cenc_key_size_should_be_the_same_as_aes_block_size);
}
AesCtrEncryptor::~AesCtrEncryptor() {}
bool AesCtrEncryptor::InitializeWithRandomIv(const std::vector<uint8>& key,
uint8 iv_size) {
CHECK(IsIvSizeValid(iv_size));
// TODO(kqyang): should we use RAND_bytes provided by openssl instead?
std::vector<uint8> iv(iv_size, 0);
base::RandBytes(&iv[0], iv_size);
return InitializeWithIv(key, iv);
}
bool AesCtrEncryptor::InitializeWithIv(const std::vector<uint8>& key,
const std::vector<uint8>& iv) {
CHECK_EQ(kCencKeySize, key.size());
CHECK(IsIvSizeValid(iv.size()));
aes_key_.reset(new AES_KEY());
if (AES_set_encrypt_key(&key[0], AES_BLOCK_SIZE * 8, aes_key_.get()) != 0) {
aes_key_.reset();
LOG(ERROR) << "Failed to setup encryption key.";
return false;
}
SetIv(iv);
return true;
}
bool AesCtrEncryptor::Encrypt(const uint8* plaintext,
size_t plaintext_size,
uint8* ciphertext) {
DCHECK(plaintext != NULL && plaintext_size > 0 && ciphertext != NULL);
DCHECK(aes_key_ != NULL);
for (size_t i = 0; i < plaintext_size; ++i) {
if (block_offset_ == 0) {
AES_encrypt(&counter_[0], &encrypted_counter_[0], aes_key_.get());
// As mentioned in ISO/IEC FDIS 23001-7: CENC spec, of the 16 byte counter
// block, bytes 8 to 15 (i.e. the least significant bytes) are used as a
// simple 64 bit unsigned integer that is incremented by one for each
// subsequent block of sample data processed and is kept in network byte
// order.
if (Increment64(&counter_[8]))
counter_overflow_ = true;
}
ciphertext[i] = plaintext[i] ^ encrypted_counter_[block_offset_];
block_offset_ = (block_offset_ + 1) % AES_BLOCK_SIZE;
}
return true;
}
void AesCtrEncryptor::UpdateIv() {
block_offset_ = 0;
// As recommended in ISO/IEC FDIS 23001-7: CENC spec, for 64-bit (8-byte)
// IV_Sizes, initialization vectors for subsequent samples can be created by
// incrementing the initialization vector of the previous sample.
// For 128-bit (16-byte) IV_Sizes, initialization vectors for subsequent
// samples should be created by adding the block count of the previous sample
// to the initialization vector of the previous sample.
if (iv_.size() == 8) {
Increment64(&iv_[0]);
counter_ = iv_;
counter_.resize(AES_BLOCK_SIZE, 0);
} else {
DCHECK_EQ(16, iv_.size());
// Even though the block counter portion of the counter (bytes 8 to 15) is
// treated as a 64-bit number, it is recommended that the initialization
// vector is treated as a 128-bit number when calculating the next
// initialization vector from the previous one. The block counter portion
// is already incremented by number of blocks, the other 64 bits of the
// counter (bytes 0 to 7) is incremented here if the block counter portion
// has overflowed.
if (counter_overflow_)
Increment64(&counter_[0]);
iv_ = counter_;
}
counter_overflow_ = false;
}
void AesCtrEncryptor::SetIv(const std::vector<uint8>& iv) {
CHECK(IsIvSizeValid(iv.size()));
block_offset_ = 0;
counter_ = iv_ = iv;
counter_.resize(AES_BLOCK_SIZE, 0);
}
} // namespace

105
media/base/aes_encryptor.h Normal file
View File

@ -0,0 +1,105 @@
// Copyright (c) 2013 Google Inc. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// AES Encryptor implementation using openssl.
#ifndef MEDIA_BASE_AES_ENCRYPTOR_H_
#define MEDIA_BASE_AES_ENCRYPTOR_H_
#include <string>
#include <vector>
#include "base/memory/scoped_ptr.h"
struct aes_key_st;
typedef struct aes_key_st AES_KEY;
namespace media {
class AesCtrEncryptor {
public:
AesCtrEncryptor();
~AesCtrEncryptor();
// Initialize the encryptor with specified key. A random iv will be generated.
// |key| size should be 16. |iv_size| should be either 8 or 16.
// |block_offset_| is set to 0.
bool InitializeWithRandomIv(const std::vector<uint8>& key, uint8 iv_size);
// Initialize the encryptor with specified key and iv.
// |key| size should be 16. |iv| size should be either 8 or 16.
// |block_offset_| is set to 0.
bool InitializeWithIv(const std::vector<uint8>& key,
const std::vector<uint8>& iv);
// Various forms of encrypt calls. |block_offset_| will be updated according
// to input plaintext size.
bool Encrypt(const uint8* plaintext,
size_t plaintext_size,
uint8* ciphertext);
bool Encrypt(const std::vector<uint8>& plaintext,
std::vector<uint8>* ciphertext) {
ciphertext->resize(plaintext.size());
return Encrypt(&plaintext[0], plaintext.size(), &(*ciphertext)[0]);
}
bool Encrypt(const std::string& plaintext, std::string* ciphertext) {
ciphertext->resize(plaintext.size());
return Encrypt(reinterpret_cast<const uint8*>(plaintext.data()),
plaintext.size(),
reinterpret_cast<uint8*>(&(*ciphertext)[0]));
}
// For AES CTR, encryption and decryption are identical.
bool Decrypt(const uint8* ciphertext,
size_t ciphertext_size,
uint8* plaintext) {
return Encrypt(ciphertext, ciphertext_size, plaintext);
}
bool Decrypt(const std::vector<uint8>& ciphertext,
std::vector<uint8>* plaintext) {
return Encrypt(ciphertext, plaintext);
}
bool Decrypt(const std::string& ciphertext, std::string* plaintext) {
return Encrypt(ciphertext, plaintext);
}
// Update IV for next sample. |block_offset_| is reset to 0.
// As recommended in ISO/IEC FDIS 23001-7: CENC spec,
// For 64-bit IV size, new_iv = old_iv + 1;
// For 128-bit IV size, new_iv = old_iv + previous_sample_block_count.
void UpdateIv();
// Set IV. |block_offset_| is reset to 0.
void SetIv(const std::vector<uint8>& iv);
const std::vector<uint8>& iv() const { return iv_; }
uint32 block_offset() const { return block_offset_; }
private:
// Initialization vector, with size 8 or 16.
std::vector<uint8> iv_;
// Current block offset.
uint32 block_offset_;
// Openssl AES_KEY.
scoped_ptr<AES_KEY> aes_key_;
// Current AES-CTR counter.
std::vector<uint8> counter_;
// Encrypted counter.
std::vector<uint8> encrypted_counter_;
// Keep track of whether the counter has overflowed.
bool counter_overflow_;
DISALLOW_COPY_AND_ASSIGN(AesCtrEncryptor);
};
// TODO(kqyang): implement AesCbcEncryptor.
} // namespace
#endif // MEDIA_BASE_AES_ENCRYPTOR_H_

View File

@ -0,0 +1,298 @@
// Copyright (c) 2013 Google Inc. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/base/aes_encryptor.h"
#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
#include "base/strings/string_number_conversions.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace {
const uint32 kAesBlockSize = 16;
// From NIST SP 800-38a test case: - F.5.1 CTR-AES128.Encrypt
// http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
const uint8 kAesCtrKey[] = {0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c};
const uint8 kAesCtrIv[] = {0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff};
const uint8 kAesCtrPlaintext[] = {
// Block #1
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
// Block #2
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
// Block #3
0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,
0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
// Block #4
0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17,
0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10};
const uint8 kAesCtrCiphertext[] = {
// Block #1
0x87, 0x4d, 0x61, 0x91, 0xb6, 0x20, 0xe3, 0x26,
0x1b, 0xef, 0x68, 0x64, 0x99, 0x0d, 0xb6, 0xce,
// Block #2
0x98, 0x06, 0xf6, 0x6b, 0x79, 0x70, 0xfd, 0xff,
0x86, 0x17, 0x18, 0x7b, 0xb9, 0xff, 0xfd, 0xff,
// Block #3
0x5a, 0xe4, 0xdf, 0x3e, 0xdb, 0xd5, 0xd3, 0x5e,
0x5b, 0x4f, 0x09, 0x02, 0x0d, 0xb0, 0x3e, 0xab,
// Block #4
0x1e, 0x03, 0x1d, 0xda, 0x2f, 0xbe, 0x03, 0xd1,
0x79, 0x21, 0x70, 0xa0, 0xf3, 0x00, 0x9c, 0xee};
// Subsample test cases.
struct SubsampleTestCase {
const uint8* subsample_sizes;
uint32 subsample_count;
};
const uint8 kSubsampleTest1[] = {64};
const uint8 kSubsampleTest2[] = {13, 51};
const uint8 kSubsampleTest3[] = {52, 12};
const uint8 kSubsampleTest4[] = {16, 48};
const uint8 kSubsampleTest5[] = {3, 16, 45};
const uint8 kSubsampleTest6[] = {18, 16, 34};
const uint8 kSubsampleTest7[] = {8, 16, 2, 38};
const uint8 kSubsampleTest8[] = {10, 1, 33, 20};
const uint8 kSubsampleTest9[] = {7, 19, 6, 32};
const uint8 kSubsampleTest10[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9};
const SubsampleTestCase kSubsampleTestCases[] = {
{kSubsampleTest1, arraysize(kSubsampleTest1)},
{kSubsampleTest2, arraysize(kSubsampleTest2)},
{kSubsampleTest3, arraysize(kSubsampleTest3)},
{kSubsampleTest4, arraysize(kSubsampleTest4)},
{kSubsampleTest5, arraysize(kSubsampleTest5)},
{kSubsampleTest6, arraysize(kSubsampleTest6)},
{kSubsampleTest7, arraysize(kSubsampleTest7)},
{kSubsampleTest8, arraysize(kSubsampleTest8)},
{kSubsampleTest9, arraysize(kSubsampleTest9)},
{kSubsampleTest10, arraysize(kSubsampleTest10)}, };
// IV test values.
const uint32 kTextSizeInBytes = 60; // 3 full blocks + 1 partial block.
const uint8 kIv128Zero[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
const uint8 kIv128Two[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2};
const uint8 kIv128Four[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4};
const uint8 kIv128Max64[] = {0, 0, 0, 0, 0, 0, 0, 0,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
const uint8 kIv128OneAndThree[] = {0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 3};
const uint8 kIv128MaxMinusOne[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xfe};
const uint8 kIv64Zero[] = {0, 0, 0, 0, 0, 0, 0, 0};
const uint8 kIv64One[] = {0, 0, 0, 0, 0, 0, 0, 1};
const uint8 kIv64MaxMinusOne[] = {0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xfe};
const uint8 kIv64Max[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
struct IvTestCase {
const uint8* iv_test;
uint32 iv_size;
const uint8* iv_expected;
};
// As recommended in ISO/IEC FDIS 23001-7: CENC spec,
// For 64-bit (8-byte) IV_Sizes, initialization vectors for subsequent samples
// can be created by incrementing the initialization vector of the previous
// sample. For 128-bit (16-byte) IV_Sizes, initialization vectors for subsequent
// samples should be created by adding the block count of the previous sample to
// the initialization vector of the previous sample.
const IvTestCase kIvTestCases[] = {
{kIv128Zero, arraysize(kIv128Zero), kIv128Four},
{kIv128Max64, arraysize(kIv128Max64), kIv128OneAndThree},
{kIv128MaxMinusOne, arraysize(kIv128MaxMinusOne), kIv128Two},
{kIv64Zero, arraysize(kIv64Zero), kIv64One},
{kIv64MaxMinusOne, arraysize(kIv64MaxMinusOne), kIv64Max},
{kIv64Max, arraysize(kIv64Max), kIv64Zero}, };
// We support AES 128, i.e. 16 bytes key only.
const uint8 kInvalidKey[] = {0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2,
0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, };
// We support Iv of size 8 or 16 only as defined in CENC spec.
const uint8 kInvalidIv[] = {0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, };
} // namespace
namespace media {
class AesEncryptorTest : public testing::Test {
public:
virtual void SetUp() {
key_.assign(kAesCtrKey, kAesCtrKey + arraysize(kAesCtrKey));
iv_.assign(kAesCtrIv, kAesCtrIv + arraysize(kAesCtrIv));
plaintext_.assign(kAesCtrPlaintext,
kAesCtrPlaintext + arraysize(kAesCtrPlaintext));
ciphertext_.assign(kAesCtrCiphertext,
kAesCtrCiphertext + arraysize(kAesCtrCiphertext));
ASSERT_TRUE(encryptor_.InitializeWithIv(key_, iv_));
}
protected:
std::vector<uint8> key_;
std::vector<uint8> iv_;
std::vector<uint8> plaintext_;
std::vector<uint8> ciphertext_;
AesCtrEncryptor encryptor_;
};
TEST_F(AesEncryptorTest, NistTestCase) {
std::vector<uint8> encrypted;
EXPECT_TRUE(encryptor_.Encrypt(plaintext_, &encrypted));
EXPECT_EQ(ciphertext_, encrypted);
encryptor_.SetIv(iv_);
std::vector<uint8> decrypted;
EXPECT_TRUE(encryptor_.Decrypt(encrypted, &decrypted));
EXPECT_EQ(plaintext_, decrypted);
}
TEST_F(AesEncryptorTest, NistTestCaseInplaceEncryptionDecryption) {
std::vector<uint8> buffer = plaintext_;
EXPECT_TRUE(encryptor_.Encrypt(&buffer[0], buffer.size(), &buffer[0]));
EXPECT_EQ(ciphertext_, buffer);
encryptor_.SetIv(iv_);
EXPECT_TRUE(encryptor_.Decrypt(&buffer[0], buffer.size(), &buffer[0]));
EXPECT_EQ(plaintext_, buffer);
}
TEST_F(AesEncryptorTest, EncryptDecryptString) {
static const char kPlaintext[] = "normal plaintext of random length";
static const char kExpectedCiphertextInHex[] =
"82E3AD1EF90C5CC09EB37F1B9EFBD99016441A1C15123F0777CD57BB993E14DA02";
std::string ciphertext;
EXPECT_TRUE(encryptor_.Encrypt(kPlaintext, &ciphertext));
EXPECT_EQ(kExpectedCiphertextInHex,
base::HexEncode(ciphertext.data(), ciphertext.size()));
std::string decrypted;
encryptor_.SetIv(iv_);
EXPECT_TRUE(encryptor_.Decrypt(ciphertext, &decrypted));
EXPECT_EQ(kPlaintext, decrypted);
}
TEST_F(AesEncryptorTest, 128BitIVBoundaryCaseEncryption) {
// There are four blocks of text in |plaintext_|. The first block should be
// encrypted with IV = kIv128Max64, the subsequent blocks should be encrypted
// with iv 0 to 3.
std::vector<uint8> iv_max64(kIv128Max64,
kIv128Max64 + arraysize(kIv128Max64));
ASSERT_TRUE(encryptor_.InitializeWithIv(key_, iv_max64));
std::vector<uint8> encrypted;
EXPECT_TRUE(encryptor_.Encrypt(plaintext_, &encrypted));
std::vector<uint8> iv_one_and_three(
kIv128OneAndThree, kIv128OneAndThree + arraysize(kIv128OneAndThree));
encryptor_.UpdateIv();
EXPECT_EQ(iv_one_and_three, encryptor_.iv());
ASSERT_TRUE(encryptor_.InitializeWithIv(key_, iv_max64));
std::vector<uint8> encrypted_verify(plaintext_.size(), 0);
EXPECT_TRUE(
encryptor_.Encrypt(&plaintext_[0], kAesBlockSize, &encrypted_verify[0]));
std::vector<uint8> iv_zero(kIv128Zero, kIv128Zero + arraysize(kIv128Zero));
ASSERT_TRUE(encryptor_.InitializeWithIv(key_, iv_zero));
EXPECT_TRUE(encryptor_.Encrypt(&plaintext_[kAesBlockSize],
kAesBlockSize * 3,
&encrypted_verify[kAesBlockSize]));
EXPECT_EQ(encrypted, encrypted_verify);
}
TEST_F(AesEncryptorTest, InitWithRandomIv) {
const uint8 kIvSize = 8;
ASSERT_TRUE(encryptor_.InitializeWithRandomIv(key_, kIvSize));
ASSERT_EQ(kIvSize, encryptor_.iv().size());
LOG(INFO) << "Random IV: " << base::HexEncode(&encryptor_.iv()[0],
encryptor_.iv().size());
}
TEST_F(AesEncryptorTest, UnsupportedKeySize) {
std::vector<uint8> key(kInvalidKey, kInvalidKey + arraysize(kInvalidKey));
ASSERT_DEATH(encryptor_.InitializeWithIv(key, iv_), "");
}
TEST_F(AesEncryptorTest, UnsupportedIV) {
std::vector<uint8> iv(kInvalidIv, kInvalidIv + arraysize(kInvalidIv));
ASSERT_DEATH(encryptor_.InitializeWithIv(key_, iv), "");
}
TEST_F(AesEncryptorTest, IncorrectIvSize) {
ASSERT_DEATH(encryptor_.InitializeWithRandomIv(key_, 15), "");
}
class AesCtrEncryptorSubsampleTest
: public AesEncryptorTest,
public ::testing::WithParamInterface<SubsampleTestCase> {};
TEST_P(AesCtrEncryptorSubsampleTest, NistTestCaseSubsamples) {
const SubsampleTestCase* test_case = &GetParam();
std::vector<uint8> encrypted(plaintext_.size(), 0);
for (uint32 i = 0, offset = 0; i < test_case->subsample_count; ++i) {
uint32 len = test_case->subsample_sizes[i];
EXPECT_TRUE(
encryptor_.Encrypt(&plaintext_[offset], len, &encrypted[offset]));
offset += len;
EXPECT_EQ(offset % kAesBlockSize, encryptor_.block_offset());
}
EXPECT_EQ(ciphertext_, encrypted);
encryptor_.SetIv(iv_);
std::vector<uint8> decrypted(encrypted.size(), 0);
for (uint32 i = 0, offset = 0; i < test_case->subsample_count; ++i) {
uint32 len = test_case->subsample_sizes[i];
EXPECT_TRUE(
encryptor_.Decrypt(&encrypted[offset], len, &decrypted[offset]));
offset += len;
EXPECT_EQ(offset % kAesBlockSize, encryptor_.block_offset());
}
EXPECT_EQ(plaintext_, decrypted);
}
INSTANTIATE_TEST_CASE_P(SubsampleTestCases,
AesCtrEncryptorSubsampleTest,
::testing::ValuesIn(kSubsampleTestCases));
class AesCtrEncryptorIvTest : public ::testing::TestWithParam<IvTestCase> {};
TEST_P(AesCtrEncryptorIvTest, IvTest) {
// Some dummy key and plaintext.
std::vector<uint8> key(16, 1);
std::vector<uint8> plaintext(kTextSizeInBytes, 3);
std::vector<uint8> iv_test(GetParam().iv_test,
GetParam().iv_test + GetParam().iv_size);
std::vector<uint8> iv_expected(GetParam().iv_expected,
GetParam().iv_expected + GetParam().iv_size);
AesCtrEncryptor encryptor;
ASSERT_TRUE(encryptor.InitializeWithIv(key, iv_test));
std::vector<uint8> encrypted;
EXPECT_TRUE(encryptor.Encrypt(plaintext, &encrypted));
encryptor.UpdateIv();
EXPECT_EQ(iv_expected, encryptor.iv());
}
INSTANTIATE_TEST_CASE_P(IvTestCases,
AesCtrEncryptorIvTest,
::testing::ValuesIn(kIvTestCases));
} // namespace media

View File

@ -0,0 +1,22 @@
// Copyright (c) 2013 Google Inc. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/base/encryptor_source.h"
namespace {
const char kWidevineSystemId[] = {0xed, 0xef, 0x8b, 0xa9, 0x79, 0xd6,
0x4a, 0xce, 0xa3, 0xc8, 0x27, 0xdc,
0xd5, 0x1d, 0x21, 0xed};
} // namespace
namespace media {
EncryptorSource::EncryptorSource()
: key_system_id_(kWidevineSystemId,
kWidevineSystemId + arraysize(kWidevineSystemId)),
clear_milliseconds_(0) {}
EncryptorSource::~EncryptorSource() {}
} // namespace media

View File

@ -7,23 +7,57 @@
#ifndef MEDIA_BASE_ENCRYPTOR_SOURCE_H_ #ifndef MEDIA_BASE_ENCRYPTOR_SOURCE_H_
#define MEDIA_BASE_ENCRYPTOR_SOURCE_H_ #define MEDIA_BASE_ENCRYPTOR_SOURCE_H_
#include <vector>
#include "base/memory/scoped_ptr.h" #include "base/memory/scoped_ptr.h"
#include "media/base/container_names.h" #include "media/base/aes_encryptor.h"
#include "media/base/status.h" #include "media/base/status.h"
namespace media { namespace media {
class EncryptorSource { class EncryptorSource {
public: public:
EncryptorSource() {} EncryptorSource();
virtual ~EncryptorSource() {} virtual ~EncryptorSource();
virtual Status Init() = 0; virtual Status Initialize() = 0;
// Refreshes the encryptor. NOP except for key rotation encryptor source.
// TODO(kqyang): Do we need to pass in duration or fragment number?
virtual void RefreshEncryptor() {}
// EncryptorSource retains the ownership of |encryptor_|.
AesCtrEncryptor* encryptor() { return encryptor_.get(); }
const std::vector<uint8>& key_id() const { return key_id_; }
const std::vector<uint8>& key() const { return key_; }
const std::vector<uint8>& pssh() const { return pssh_; }
uint32 clear_milliseconds() const { return clear_milliseconds_; }
const std::vector<uint8>& key_system_id() const { return key_system_id_; }
protected:
// EncryptorSource takes ownership of |encryptor|.
void set_encryptor(scoped_ptr<AesCtrEncryptor> encryptor) {
encryptor_ = encryptor.Pass();
}
void set_key_id(const std::vector<uint8>& key_id) { key_id_ = key_id; }
void set_key(const std::vector<uint8>& key) { key_ = key; }
void set_pssh(const std::vector<uint8>& pssh) { pssh_ = pssh; }
void set_clear_milliseconds(uint32 clear_milliseconds) {
clear_milliseconds_ = clear_milliseconds;
}
private: private:
scoped_ptr<AesCtrEncryptor> encryptor_;
std::vector<uint8> key_id_;
std::vector<uint8> key_;
std::vector<uint8> pssh_;
// The first |clear_milliseconds_| of the result media should be in the clear
// text, i.e. should not be encrypted.
uint32 clear_milliseconds_;
const std::vector<uint8> key_system_id_;
DISALLOW_COPY_AND_ASSIGN(EncryptorSource); DISALLOW_COPY_AND_ASSIGN(EncryptorSource);
}; };
} }
#endif // MEDIA_BASE_ENCRYPTOR_SOURCE_H_ #endif // MEDIA_BASE_ENCRYPTOR_SOURCE_H_

View File

@ -0,0 +1,60 @@
// Copyright (c) 2013 Google Inc. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/base/fixed_encryptor_source.h"
#include "base/logging.h"
#include "base/strings/string_number_conversions.h"
#include "media/base/aes_encryptor.h"
namespace {
// The size of generated IV for this encryptor source.
const uint8 kIvSize = 8;
} // namespace
namespace media {
FixedEncryptorSource::FixedEncryptorSource(const std::string& key_id_hex,
const std::string& key_hex,
const std::string& pssh_hex,
uint32 clear_milliseconds)
: key_id_hex_(key_id_hex),
key_hex_(key_hex),
pssh_hex_(pssh_hex) {
set_clear_milliseconds(clear_milliseconds);
}
FixedEncryptorSource::~FixedEncryptorSource() {}
Status FixedEncryptorSource::Initialize() {
std::vector<uint8> key_id;
if (!base::HexStringToBytes(key_id_hex_, &key_id)) {
LOG(ERROR) << "Cannot parse key_id_hex " << key_id_hex_;
return Status(error::INVALID_ARGUMENT, "Cannot parse input key_id_hex.");
}
std::vector<uint8> key;
if (!base::HexStringToBytes(key_hex_, &key)) {
LOG(ERROR) << "Cannot parse key_hex " << key_hex_;
return Status(error::INVALID_ARGUMENT, "Cannot parse input key_hex.");
}
std::vector<uint8> pssh;
if (!base::HexStringToBytes(pssh_hex_, &pssh)) {
LOG(ERROR) << "Cannot parse pssh_hex " << pssh_hex_;
return Status(error::INVALID_ARGUMENT, "Cannot parse input pssh_hex.");
}
scoped_ptr<AesCtrEncryptor> encryptor(new AesCtrEncryptor());
if (!encryptor->InitializeWithRandomIv(key, kIvSize))
return Status(error::UNKNOWN, "Failed to initialize the encryptor.");
set_encryptor(encryptor.Pass());
set_key_id(key_id);
set_key(key);
set_pssh(pssh);
return Status::OK;
}
} // namespace media

View File

@ -0,0 +1,35 @@
// Copyright (c) 2013 Google Inc. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Defines a fixed encryptor source with keys provided by user.
#ifndef MEDIA_BASE_FIXED_ENCRYPTOR_SOURCE_H_
#define MEDIA_BASE_FIXED_ENCRYPTOR_SOURCE_H_
#include "media/base/encryptor_source.h"
namespace media {
class FixedEncryptorSource : public EncryptorSource {
public:
FixedEncryptorSource(const std::string& key_id_hex,
const std::string& key_hex,
const std::string& pssh_hex,
uint32 clear_milliseconds);
virtual ~FixedEncryptorSource();
// EncryptorSource implementation.
virtual Status Initialize() OVERRIDE;
private:
std::string key_id_hex_;
std::string key_hex_;
std::string pssh_hex_;
DISALLOW_COPY_AND_ASSIGN(FixedEncryptorSource);
};
} // namespace media
#endif // MEDIA_BASE_FIXED_ENCRYPTOR_SOURCE_H_