// Copyright 2016 Google LLC. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file or at // https://developers.google.com/open-source/licenses/bsd #include #include #include #include #include #include #include #include #include #include using ::testing::InSequence; using ::testing::Return; using ::testing::_; namespace shaka { namespace media { namespace mp2t { namespace { const int kTsPacketSize = 188; const Codec kCodecForTesting = kCodecH264; class MockProgramMapTableWriter : public ProgramMapTableWriter { public: MockProgramMapTableWriter() : ProgramMapTableWriter(kCodecForTesting) {} ~MockProgramMapTableWriter() override = default; MOCK_METHOD1(EncryptedSegmentPmt, bool(BufferWriter* writer)); MOCK_METHOD1(ClearSegmentPmt, bool(BufferWriter* writer)); private: MockProgramMapTableWriter(const MockProgramMapTableWriter&) = delete; MockProgramMapTableWriter& operator=(const MockProgramMapTableWriter&) = delete; bool WriteDescriptors(BufferWriter* writer) const override { return true; } }; // This is not a real TS Packet. But is used to check that the result from the // MockProgramMapTableWriter is used at the right place. const uint8_t kMockPmtWriterData[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x3F, 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4A, 0x4B, 0x4C, 0x4D, 0x4E, 0x4F, 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x5B, 0x5C, 0x5D, 0x5E, 0x5F, 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6A, 0x6B, 0x6C, 0x6D, 0x6E, 0x6F, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x7B, 0x7C, 0x7D, 0x7E, 0x7F, 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x8B, 0x8C, 0x8D, 0x8E, 0x8F, 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0x9B, 0x9C, 0x9D, 0x9E, 0x9F, 0xA0, 0xA1, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7, 0xA8, 0xA9, 0xAA, 0xAB, 0xAC, 0xAD, 0xAE, 0xAF, 0xB0, 0xB1, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xBB, }; ACTION(WriteOnePmt) { BufferWriter* writer = arg0; writer->AppendArray(kMockPmtWriterData, std::size(kMockPmtWriterData)); return true; } ACTION(WriteTwoPmts) { BufferWriter* writer = arg0; writer->AppendArray(kMockPmtWriterData, std::size(kMockPmtWriterData)); writer->AppendArray(kMockPmtWriterData, std::size(kMockPmtWriterData)); return true; } } // namespace class TsWriterTest : public ::testing::Test { protected: // Checks whether |actual|'s prefix matches with |prefix| and the suffix // matches with |suffix|. If there is padding, then padding_length specifies // how long the padding is between prefix and suffix. // |actual| must be at least 188 bytes long. void ExpectTsPacketEqual(const uint8_t* prefix, size_t prefix_size, int padding_length, const uint8_t* suffix, size_t suffix_size, const uint8_t* actual) { std::vector actual_prefix(actual, actual + prefix_size); EXPECT_EQ(std::vector(prefix, prefix + prefix_size), actual_prefix); // Padding until the payload. for (size_t i = prefix_size; i < kTsPacketSize - suffix_size; ++i) { EXPECT_EQ(0xFF, actual[i]) << "at index " << i; } std::vector actual_suffix(actual + prefix_size + padding_length, actual + kTsPacketSize); EXPECT_EQ(std::vector(suffix, suffix + suffix_size), actual_suffix); } }; // Verify that PAT and PMT are correct for clear segment. // This test covers verifies the PAT, and since it doesn't change, other tests // shouldn't have to check this. TEST_F(TsWriterTest, ClearH264Psi) { std::unique_ptr mock_pmt_writer( new MockProgramMapTableWriter()); EXPECT_CALL(*mock_pmt_writer, ClearSegmentPmt(_)).WillOnce(WriteOnePmt()); BufferWriter buffer_writer; TsWriter ts_writer(std::move(mock_pmt_writer)); EXPECT_TRUE(ts_writer.NewSegment(&buffer_writer)); // 2 TS Packets one for PAT and the fake PMT data. ASSERT_EQ(376u, buffer_writer.Size()); const uint8_t kExpectedPatPrefix[] = { 0x47, // Sync byte. 0x40, // payload_unit_start_indicator set. 0x00, // pid. 0x30, // Adaptation field and payload are both present. counter = 0. 0xA6, // Adaptation Field length. 0x00, // All adaptation field flags 0. }; const int kExpectedPatPrefixSize = std::size(kExpectedPatPrefix); const uint8_t kExpectedPatPayload[] = { 0x00, // pointer field 0x00, 0xB0, // The last 2 '00' assumes that this PAT is not very long. 0x0D, // Length of the rest of this array. 0x00, 0x00, // Transport stream ID is 0. 0xC1, // version number 0, current next indicator 1. 0x00, // section number 0x00, // last section number // program number -> PMT PID mapping. 0x00, 0x01, // program number is 1. 0xE0, // first 3 bits is reserved. 0x20, // PMT PID. // CRC32. 0xf9, 0x62, 0xf5, 0x8b, }; EXPECT_NO_FATAL_FAILURE(ExpectTsPacketEqual( kExpectedPatPrefix, kExpectedPatPrefixSize, 165, kExpectedPatPayload, std::size(kExpectedPatPayload), buffer_writer.Buffer())); EXPECT_EQ(0, memcmp(kMockPmtWriterData, buffer_writer.Buffer() + kTsPacketSize, kTsPacketSize)); } TEST_F(TsWriterTest, ClearAacPmt) { std::unique_ptr mock_pmt_writer( new MockProgramMapTableWriter()); EXPECT_CALL(*mock_pmt_writer, ClearSegmentPmt(_)).WillOnce(WriteOnePmt()); BufferWriter buffer_writer; TsWriter ts_writer(std::move(mock_pmt_writer)); EXPECT_TRUE(ts_writer.NewSegment(&buffer_writer)); // 2 TS Packets. PAT, PMT. ASSERT_EQ(376u, buffer_writer.Size()); EXPECT_EQ(0, memcmp(kMockPmtWriterData, buffer_writer.Buffer() + kTsPacketSize, kTsPacketSize)); } // The stream is flaged with will_be_encrypted. Verify that 2 PMTs are created. // One for clear lead and another for encrypted segments that follow. TEST_F(TsWriterTest, ClearLeadH264Pmt) { std::unique_ptr mock_pmt_writer( new MockProgramMapTableWriter()); EXPECT_CALL(*mock_pmt_writer, ClearSegmentPmt(_)) .WillOnce(WriteTwoPmts()); BufferWriter buffer_writer; TsWriter ts_writer(std::move(mock_pmt_writer)); EXPECT_TRUE(ts_writer.NewSegment(&buffer_writer)); ASSERT_EQ(564u, buffer_writer.Size()); EXPECT_EQ(0, memcmp(kMockPmtWriterData, buffer_writer.Buffer() + kTsPacketSize, kTsPacketSize)); EXPECT_EQ(0, memcmp(kMockPmtWriterData, buffer_writer.Buffer() + 2 * kTsPacketSize, kTsPacketSize)); } TEST_F(TsWriterTest, ClearSegmentPmtFailure) { std::unique_ptr mock_pmt_writer( new MockProgramMapTableWriter()); EXPECT_CALL(*mock_pmt_writer, ClearSegmentPmt(_)).WillOnce(Return(false)); BufferWriter buffer_writer; TsWriter ts_writer(std::move(mock_pmt_writer)); EXPECT_FALSE(ts_writer.NewSegment(&buffer_writer)); } // Check the encrypted segments' PMT (after clear lead). TEST_F(TsWriterTest, EncryptedSegmentsH264Pmt) { std::unique_ptr mock_pmt_writer( new MockProgramMapTableWriter()); InSequence s; EXPECT_CALL(*mock_pmt_writer, ClearSegmentPmt(_)).WillOnce(Return(true)); EXPECT_CALL(*mock_pmt_writer, EncryptedSegmentPmt(_)).WillOnce(WriteOnePmt()); BufferWriter buffer_writer; TsWriter ts_writer(std::move(mock_pmt_writer)); EXPECT_TRUE(ts_writer.NewSegment(&buffer_writer)); buffer_writer.Clear(); // Overwrite the file but as encrypted segment. ts_writer.SignalEncrypted(); EXPECT_TRUE(ts_writer.NewSegment(&buffer_writer)); ASSERT_EQ(376u, buffer_writer.Size()); EXPECT_EQ(0, memcmp(kMockPmtWriterData, buffer_writer.Buffer() + kTsPacketSize, kTsPacketSize)); } TEST_F(TsWriterTest, EncryptedSegmentPmtFailure) { std::unique_ptr mock_pmt_writer( new MockProgramMapTableWriter()); InSequence s; EXPECT_CALL(*mock_pmt_writer, ClearSegmentPmt(_)).WillOnce(Return(true)); EXPECT_CALL(*mock_pmt_writer, EncryptedSegmentPmt(_)).WillOnce(Return(false)); BufferWriter buffer_writer; TsWriter ts_writer(std::move(mock_pmt_writer)); EXPECT_TRUE(ts_writer.NewSegment(&buffer_writer)); ts_writer.SignalEncrypted(); EXPECT_FALSE(ts_writer.NewSegment(&buffer_writer)); } // Same as ClearLeadH264Pmt but for AAC. TEST_F(TsWriterTest, ClearLeadAacPmt) { std::unique_ptr mock_pmt_writer( new MockProgramMapTableWriter()); EXPECT_CALL(*mock_pmt_writer, ClearSegmentPmt(_)) .WillOnce(WriteTwoPmts()); BufferWriter buffer_writer; TsWriter ts_writer(std::move(mock_pmt_writer)); EXPECT_TRUE(ts_writer.NewSegment(&buffer_writer)); ASSERT_EQ(564u, buffer_writer.Size()); EXPECT_EQ(0, memcmp(kMockPmtWriterData, buffer_writer.Buffer() + kTsPacketSize, kTsPacketSize)); EXPECT_EQ(0, memcmp(kMockPmtWriterData, buffer_writer.Buffer() + 2 * kTsPacketSize, kTsPacketSize)); } // Same as EncryptedSegmentsH264Pmt but for AAC. TEST_F(TsWriterTest, EncryptedSegmentsAacPmt) { std::unique_ptr mock_pmt_writer( new MockProgramMapTableWriter()); InSequence s; EXPECT_CALL(*mock_pmt_writer, ClearSegmentPmt(_)).WillOnce(Return(true)); EXPECT_CALL(*mock_pmt_writer, EncryptedSegmentPmt(_)).WillOnce(WriteOnePmt()); BufferWriter buffer_writer; TsWriter ts_writer(std::move(mock_pmt_writer)); EXPECT_TRUE(ts_writer.NewSegment(&buffer_writer)); buffer_writer.Clear(); // Overwrite the file but as encrypted segment. ts_writer.SignalEncrypted(); EXPECT_TRUE(ts_writer.NewSegment(&buffer_writer)); ASSERT_EQ(376u, buffer_writer.Size()); EXPECT_EQ(0, memcmp(kMockPmtWriterData, buffer_writer.Buffer() + kTsPacketSize, kTsPacketSize)); } TEST_F(TsWriterTest, AddPesPacket) { TsWriter ts_writer(std::unique_ptr( new VideoProgramMapTableWriter(kCodecForTesting))); BufferWriter buffer_writer; EXPECT_TRUE(ts_writer.NewSegment(&buffer_writer)); std::unique_ptr pes(new PesPacket()); pes->set_stream_id(0xE0); pes->set_pts(0x900); pes->set_dts(0x900); const uint8_t kAnyData[] = { 0x12, 0x88, 0x4f, 0x4a, }; pes->mutable_data()->assign(kAnyData, kAnyData + std::size(kAnyData)); EXPECT_TRUE(ts_writer.AddPesPacket(std::move(pes), &buffer_writer)); // 3 TS Packets. PAT, PMT, and PES. ASSERT_EQ(564u, buffer_writer.Size()); const int kPesStartPosition = 376; // Prefix of the expected output. Rest of the packet should be filled with // padding. const uint8_t kExpectedOutputPrefix[] = { 0x47, // Sync byte. 0x40, // payload_unit_start_indicator set. 0x50, // pid. 0x30, // Adaptation field and payload are both present. counter = 0. 0xA0, // Adaptation Field length. 0x10, // pcr flag. 0x00, 0x00, 0x04, 0x80, 0x7e, 0x00, // PCR. }; const uint8_t kExpectedPayload[] = { 0x00, 0x00, 0x01, // Start code. 0xE0, // stream id. 0x00, 0x11, // PES_packet_length. 0x80, // Flags. 0xC0, // PTS and DTS both present. 0x0A, // PES_header_data_length. 0x31, // Since PTS is 0 this is '0011' (fixed) and marker bit at LSB. 0x00, // PTS leading bits 0. 0x01, // PTS 0 followed by marker bit. 0x12, // PTS 0x900 shifted. 0x01, // PTS 0 followed by marker bit. 0x11, // Fixed '0001' followed by marker bit at LSB. 0x00, // DTS leading bits 0. 0x01, // DTS 0 followed by marker bit. 0x12, // DTS 0x900 shifted. 0x01, // DTS 0 followed by marker bit. 0x12, 0x88, 0x4f, 0x4a, // Payload. }; EXPECT_NO_FATAL_FAILURE(ExpectTsPacketEqual( kExpectedOutputPrefix, std::size(kExpectedOutputPrefix), 153, kExpectedPayload, std::size(kExpectedPayload), buffer_writer.Buffer() + kPesStartPosition)); } // Verify that PES packet > 64KiB can be handled. TEST_F(TsWriterTest, BigPesPacket) { TsWriter ts_writer(std::unique_ptr( new VideoProgramMapTableWriter(kCodecForTesting))); BufferWriter buffer_writer; EXPECT_TRUE(ts_writer.NewSegment(&buffer_writer)); std::unique_ptr pes(new PesPacket()); pes->set_pts(0); pes->set_dts(0); // A little over 2 TS Packets (3 TS Packets). const std::vector big_data(400, 0x23); *pes->mutable_data() = big_data; EXPECT_TRUE(ts_writer.AddPesPacket(std::move(pes), &buffer_writer)); // The first TsPacket can only carry // 177 (TS packet size - header - adaptation_field) - 19 (PES header data) = // 158 bytes of the PES packet payload. // So this should create // 2 + 1 + ceil((400 - 158) / 184) = 5 TsPackets. // Where 184 is the maxium payload of a TS packet. EXPECT_EQ(5u * 188, buffer_writer.Size()); // Check continuity counter. EXPECT_EQ(0, (buffer_writer.Buffer()[2 * 188 + 3] & 0xF)); EXPECT_EQ(1, (buffer_writer.Buffer()[3 * 188 + 3] & 0xF)); EXPECT_EQ(2, (buffer_writer.Buffer()[4 * 188 + 3] & 0xF)); } // Bug found in code review. It should check whether PTS is present not whether // PTS (implicilty) cast to bool is true. TEST_F(TsWriterTest, PesPtsZeroNoDts) { TsWriter ts_writer(std::unique_ptr( new VideoProgramMapTableWriter(kCodecForTesting))); BufferWriter buffer_writer; EXPECT_TRUE(ts_writer.NewSegment(&buffer_writer)); std::unique_ptr pes(new PesPacket()); pes->set_stream_id(0xE0); pes->set_pts(0x0); const uint8_t kAnyData[] = { 0x12, 0x88, 0x4F, 0x4A, }; pes->mutable_data()->assign(kAnyData, kAnyData + std::size(kAnyData)); EXPECT_TRUE(ts_writer.AddPesPacket(std::move(pes), &buffer_writer)); // 3 TS Packets. PAT, PMT, and PES. ASSERT_EQ(564u, buffer_writer.Size()); const int kPesStartPosition = 376; // Prefix of the expected output. Rest of the packet should be filled with // padding. const uint8_t kExpectedOutputPrefix[] = { 0x47, // Sync byte. 0x40, // payload_unit_start_indicator set. 0x50, // pid. 0x30, // Adaptation field and payload are both present. counter = 0. 0xA5, // Adaptation Field length. 0x10, // pcr flag. 0x00, 0x00, 0x00, 0x00, 0x7e, 0x00, // PCR. }; const uint8_t kExpectedPayload[] = { 0x00, 0x00, 0x01, // Start code. 0xE0, // stream id. 0x00, 0x0C, // PES_packet_length. 0x80, // Flags. 0x80, // Only PTS present. 0x05, // PES_header_data_length. 0x21, // Since PTS is 0 this is '0010' (fixed) and marker bit at LSB. 0x00, // PTS 0. 0x01, // PTS 0 followed by marker bit. 0x00, // PTS 0. 0x01, // PTS 0 followed by marker bit. 0x12, 0x88, 0x4F, 0x4A, // Payload. }; EXPECT_NO_FATAL_FAILURE(ExpectTsPacketEqual( kExpectedOutputPrefix, std::size(kExpectedOutputPrefix), 158, kExpectedPayload, std::size(kExpectedPayload), buffer_writer.Buffer() + kPesStartPosition)); } // Verify that TS packet with payload 183 is handled correctly, e.g. // adaptation_field_length should be 0. TEST_F(TsWriterTest, TsPacketPayload183Bytes) { TsWriter ts_writer(std::unique_ptr( new VideoProgramMapTableWriter(kCodecForTesting))); BufferWriter buffer_writer; EXPECT_TRUE(ts_writer.NewSegment(&buffer_writer)); std::unique_ptr pes(new PesPacket()); pes->set_stream_id(0xE0); pes->set_pts(0x00); pes->set_dts(0x00); // Note that first TS packet will have adaptation fields with PCR, so make // payload big enough so that second PES packet's payload is 183. // First TS packet can carry 157 bytes of PES payload. The next one should // carry 183 bytes. std::vector pes_payload(157 + 183, 0xAF); *pes->mutable_data() = pes_payload; EXPECT_TRUE(ts_writer.AddPesPacket(std::move(pes), &buffer_writer)); const uint8_t kExpectedOutputPrefix[] = { 0x47, // Sync byte. 0x00, // payload_unit_start_indicator set. 0x50, // pid. 0x31, // Adaptation field and payload are both present. counter = 0. 0x00, // Adaptation Field length, 1 byte padding. }; // 4 TsPackets. PAT, PMT, TsPacket with PES header, TsPacket rest of PES // payload. ASSERT_EQ(752u, buffer_writer.Size()); const int kPesStartPosition = 564; std::vector actual_prefix(buffer_writer.Buffer() + kPesStartPosition, buffer_writer.Buffer() + kPesStartPosition + 5); EXPECT_EQ( std::vector(kExpectedOutputPrefix, kExpectedOutputPrefix + 5), actual_prefix); } } // namespace mp2t } // namespace media } // namespace shaka