// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "packager/media/codecs/h264_parser.h" #include #include "packager/base/logging.h" #include "packager/media/base/buffer_reader.h" #define LOG_ERROR_ONCE(msg) \ do { \ static bool logged_once = false; \ LOG_IF(ERROR, !logged_once) << msg; \ logged_once = true; \ } while (0) namespace shaka { namespace media { // Implemented according to ISO/IEC 14496-10:2005 7.4.2.1 Sequence parameter set // RBSP semantics. bool ExtractResolutionFromSps(const H264Sps& sps, uint32_t* coded_width, uint32_t* coded_height, uint32_t* pixel_width, uint32_t* pixel_height) { int crop_x = 0; int crop_y = 0; if (sps.frame_cropping_flag) { int sub_width_c = 0; int sub_height_c = 0; // Table 6-1. switch (sps.chroma_format_idc) { case 0: // monochrome // SubWidthC and SubHeightC are not defined for monochrome. For ease of // computation afterwards, assign both to 1. sub_width_c = 1; sub_height_c = 1; break; case 1: // 4:2:0 sub_width_c = 2; sub_height_c = 2; break; case 2: // 4:2:2 sub_width_c = 2; sub_height_c = 1; break; case 3: // 4:4:4 sub_width_c = 1; sub_height_c = 1; break; default: LOG(ERROR) << "Unexpected chroma_format_idc " << sps.chroma_format_idc; return false; } // Formula 7-16, 7-17, 7-18, 7-19. int crop_unit_x = sub_width_c; int crop_unit_y = sub_height_c * (2 - (sps.frame_mbs_only_flag ? 1 : 0)); crop_x = crop_unit_x * (sps.frame_crop_left_offset + sps.frame_crop_right_offset); crop_y = crop_unit_y * (sps.frame_crop_top_offset + sps.frame_crop_bottom_offset); } // Formula 7-10, 7-11. int pic_width_in_mbs = sps.pic_width_in_mbs_minus1 + 1; *coded_width = pic_width_in_mbs * 16 - crop_x; // Formula 7-13, 7-15. int pic_height_in_mbs = (2 - (sps.frame_mbs_only_flag ? 1 : 0)) * (sps.pic_height_in_map_units_minus1 + 1); *coded_height = pic_height_in_mbs * 16 - crop_y; // 0 means it wasn't in the SPS and therefore assume 1. *pixel_width = sps.sar_width == 0 ? 1 : sps.sar_width; *pixel_height = sps.sar_height == 0 ? 1 : sps.sar_height; DVLOG(2) << "Found coded_width: " << *coded_width << " coded_height: " << *coded_height << " pixel_width: " << *pixel_width << " pixel_height: " << *pixel_height; return true; } bool H264SliceHeader::IsPSlice() const { return (slice_type % 5 == kPSlice); } bool H264SliceHeader::IsBSlice() const { return (slice_type % 5 == kBSlice); } bool H264SliceHeader::IsISlice() const { return (slice_type % 5 == kISlice); } bool H264SliceHeader::IsSPSlice() const { return (slice_type % 5 == kSPSlice); } bool H264SliceHeader::IsSISlice() const { return (slice_type % 5 == kSISlice); } H264Sps::H264Sps() { memset(this, 0, sizeof(*this)); } H264Pps::H264Pps() { memset(this, 0, sizeof(*this)); } H264SliceHeader::H264SliceHeader() { memset(this, 0, sizeof(*this)); } H264SEIMessage::H264SEIMessage() { memset(this, 0, sizeof(*this)); } #define READ_BITS_OR_RETURN(num_bits, out) \ do { \ if (!br->ReadBits(num_bits, (out))) { \ DVLOG(1) \ << "Error in stream: unexpected EOS while trying to read " #out; \ return kInvalidStream; \ } \ } while (0) #define READ_BOOL_OR_RETURN(out) \ do { \ int _out; \ if (!br->ReadBits(1, &_out)) { \ DVLOG(1) \ << "Error in stream: unexpected EOS while trying to read " #out; \ return kInvalidStream; \ } \ *(out) = _out != 0; \ } while (0) #define READ_UE_OR_RETURN(out) \ do { \ if (!br->ReadUE(out)) { \ DVLOG(1) << "Error in stream: invalid value while trying to read " #out; \ return kInvalidStream; \ } \ } while (0) #define READ_SE_OR_RETURN(out) \ do { \ if (!br->ReadSE(out)) { \ DVLOG(1) << "Error in stream: invalid value while trying to read " #out; \ return kInvalidStream; \ } \ } while (0) #define IN_RANGE_OR_RETURN(val, min, max) \ do { \ if ((val) < (min) || (val) > (max)) { \ DVLOG(1) << "Error in stream: invalid value, expected " #val " to be" \ << " in range [" << (min) << ":" << (max) << "]" \ << " found " << (val) << " instead"; \ return kInvalidStream; \ } \ } while (0) #define TRUE_OR_RETURN(a) \ do { \ if (!(a)) { \ DVLOG(1) << "Error in stream: invalid value, expected " << #a; \ return kInvalidStream; \ } \ } while (0) enum AspectRatioIdc { kExtendedSar = 255, }; // ISO 14496 part 10 // VUI parameters: Table E-1 "Meaning of sample aspect ratio indicator" static const int kTableSarWidth[] = { 0, 1, 12, 10, 16, 40, 24, 20, 32, 80, 18, 15, 64, 160, 4, 3, 2 }; static const int kTableSarHeight[] = { 0, 1, 11, 11, 11, 33, 11, 11, 11, 33, 11, 11, 33, 99, 3, 2, 1 }; static_assert(arraysize(kTableSarWidth) == arraysize(kTableSarHeight), "sar_tables_must_have_same_size"); H264Parser::H264Parser() {} H264Parser::~H264Parser() {} const H264Pps* H264Parser::GetPps(int pps_id) { return active_PPSes_[pps_id].get(); } const H264Sps* H264Parser::GetSps(int sps_id) { return active_SPSes_[sps_id].get(); } // Default scaling lists (per spec). static const int kDefault4x4Intra[kH264ScalingList4x4Length] = { 6, 13, 13, 20, 20, 20, 28, 28, 28, 28, 32, 32, 32, 37, 37, 42, }; static const int kDefault4x4Inter[kH264ScalingList4x4Length] = { 10, 14, 14, 20, 20, 20, 24, 24, 24, 24, 27, 27, 27, 30, 30, 34, }; static const int kDefault8x8Intra[kH264ScalingList8x8Length] = { 6, 10, 10, 13, 11, 13, 16, 16, 16, 16, 18, 18, 18, 18, 18, 23, 23, 23, 23, 23, 23, 25, 25, 25, 25, 25, 25, 25, 27, 27, 27, 27, 27, 27, 27, 27, 29, 29, 29, 29, 29, 29, 29, 31, 31, 31, 31, 31, 31, 33, 33, 33, 33, 33, 36, 36, 36, 36, 38, 38, 38, 40, 40, 42, }; static const int kDefault8x8Inter[kH264ScalingList8x8Length] = { 9, 13, 13, 15, 13, 15, 17, 17, 17, 17, 19, 19, 19, 19, 19, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 30, 30, 30, 30, 32, 32, 32, 33, 33, 35, }; static inline void DefaultScalingList4x4( int i, int scaling_list4x4[][kH264ScalingList4x4Length]) { DCHECK_LT(i, 6); if (i < 3) memcpy(scaling_list4x4[i], kDefault4x4Intra, sizeof(kDefault4x4Intra)); else if (i < 6) memcpy(scaling_list4x4[i], kDefault4x4Inter, sizeof(kDefault4x4Inter)); } static inline void DefaultScalingList8x8( int i, int scaling_list8x8[][kH264ScalingList8x8Length]) { DCHECK_LT(i, 6); if (i % 2 == 0) memcpy(scaling_list8x8[i], kDefault8x8Intra, sizeof(kDefault8x8Intra)); else memcpy(scaling_list8x8[i], kDefault8x8Inter, sizeof(kDefault8x8Inter)); } static void FallbackScalingList4x4( int i, const int default_scaling_list_intra[], const int default_scaling_list_inter[], int scaling_list4x4[][kH264ScalingList4x4Length]) { static const int kScalingList4x4ByteSize = sizeof(scaling_list4x4[0][0]) * kH264ScalingList4x4Length; switch (i) { case 0: memcpy(scaling_list4x4[i], default_scaling_list_intra, kScalingList4x4ByteSize); break; case 1: memcpy(scaling_list4x4[i], scaling_list4x4[0], kScalingList4x4ByteSize); break; case 2: memcpy(scaling_list4x4[i], scaling_list4x4[1], kScalingList4x4ByteSize); break; case 3: memcpy(scaling_list4x4[i], default_scaling_list_inter, kScalingList4x4ByteSize); break; case 4: memcpy(scaling_list4x4[i], scaling_list4x4[3], kScalingList4x4ByteSize); break; case 5: memcpy(scaling_list4x4[i], scaling_list4x4[4], kScalingList4x4ByteSize); break; default: NOTREACHED(); break; } } static void FallbackScalingList8x8( int i, const int default_scaling_list_intra[], const int default_scaling_list_inter[], int scaling_list8x8[][kH264ScalingList8x8Length]) { static const int kScalingList8x8ByteSize = sizeof(scaling_list8x8[0][0]) * kH264ScalingList8x8Length; switch (i) { case 0: memcpy(scaling_list8x8[i], default_scaling_list_intra, kScalingList8x8ByteSize); break; case 1: memcpy(scaling_list8x8[i], default_scaling_list_inter, kScalingList8x8ByteSize); break; case 2: memcpy(scaling_list8x8[i], scaling_list8x8[0], kScalingList8x8ByteSize); break; case 3: memcpy(scaling_list8x8[i], scaling_list8x8[1], kScalingList8x8ByteSize); break; case 4: memcpy(scaling_list8x8[i], scaling_list8x8[2], kScalingList8x8ByteSize); break; case 5: memcpy(scaling_list8x8[i], scaling_list8x8[3], kScalingList8x8ByteSize); break; default: NOTREACHED(); break; } } H264Parser::Result H264Parser::ParseScalingList(H26xBitReader* br, int size, int* scaling_list, bool* use_default) { // See chapter 7.3.2.1.1.1. int last_scale = 8; int next_scale = 8; int delta_scale; *use_default = false; for (int j = 0; j < size; ++j) { if (next_scale != 0) { READ_SE_OR_RETURN(&delta_scale); IN_RANGE_OR_RETURN(delta_scale, -128, 127); next_scale = (last_scale + delta_scale + 256) & 0xff; if (j == 0 && next_scale == 0) { *use_default = true; return kOk; } } scaling_list[j] = (next_scale == 0) ? last_scale : next_scale; last_scale = scaling_list[j]; } return kOk; } H264Parser::Result H264Parser::ParseSpsScalingLists(H26xBitReader* br, H264Sps* sps) { // See 7.4.2.1.1. bool seq_scaling_list_present_flag; bool use_default; Result res; // Parse scaling_list4x4. for (int i = 0; i < 6; ++i) { READ_BOOL_OR_RETURN(&seq_scaling_list_present_flag); if (seq_scaling_list_present_flag) { res = ParseScalingList(br, arraysize(sps->scaling_list4x4[i]), sps->scaling_list4x4[i], &use_default); if (res != kOk) return res; if (use_default) DefaultScalingList4x4(i, sps->scaling_list4x4); } else { FallbackScalingList4x4( i, kDefault4x4Intra, kDefault4x4Inter, sps->scaling_list4x4); } } // Parse scaling_list8x8. for (int i = 0; i < ((sps->chroma_format_idc != 3) ? 2 : 6); ++i) { READ_BOOL_OR_RETURN(&seq_scaling_list_present_flag); if (seq_scaling_list_present_flag) { res = ParseScalingList(br, arraysize(sps->scaling_list8x8[i]), sps->scaling_list8x8[i], &use_default); if (res != kOk) return res; if (use_default) DefaultScalingList8x8(i, sps->scaling_list8x8); } else { FallbackScalingList8x8( i, kDefault8x8Intra, kDefault8x8Inter, sps->scaling_list8x8); } } return kOk; } H264Parser::Result H264Parser::ParsePpsScalingLists(H26xBitReader* br, const H264Sps& sps, H264Pps* pps) { // See 7.4.2.2. bool pic_scaling_list_present_flag; bool use_default; Result res; for (int i = 0; i < 6; ++i) { READ_BOOL_OR_RETURN(&pic_scaling_list_present_flag); if (pic_scaling_list_present_flag) { res = ParseScalingList(br, arraysize(pps->scaling_list4x4[i]), pps->scaling_list4x4[i], &use_default); if (res != kOk) return res; if (use_default) DefaultScalingList4x4(i, pps->scaling_list4x4); } else { if (sps.seq_scaling_matrix_present_flag) { // Table 7-2 fallback rule A in spec. FallbackScalingList4x4( i, kDefault4x4Intra, kDefault4x4Inter, pps->scaling_list4x4); } else { // Table 7-2 fallback rule B in spec. FallbackScalingList4x4(i, sps.scaling_list4x4[0], sps.scaling_list4x4[3], pps->scaling_list4x4); } } } if (pps->transform_8x8_mode_flag) { for (int i = 0; i < ((sps.chroma_format_idc != 3) ? 2 : 6); ++i) { READ_BOOL_OR_RETURN(&pic_scaling_list_present_flag); if (pic_scaling_list_present_flag) { res = ParseScalingList(br, arraysize(pps->scaling_list8x8[i]), pps->scaling_list8x8[i], &use_default); if (res != kOk) return res; if (use_default) DefaultScalingList8x8(i, pps->scaling_list8x8); } else { if (sps.seq_scaling_matrix_present_flag) { // Table 7-2 fallback rule A in spec. FallbackScalingList8x8( i, kDefault8x8Intra, kDefault8x8Inter, pps->scaling_list8x8); } else { // Table 7-2 fallback rule B in spec. FallbackScalingList8x8(i, sps.scaling_list8x8[0], sps.scaling_list8x8[1], pps->scaling_list8x8); } } } } return kOk; } H264Parser::Result H264Parser::ParseAndIgnoreHRDParameters( H26xBitReader* br, bool* hrd_parameters_present) { int data; READ_BOOL_OR_RETURN(&data); // {nal,vcl}_hrd_parameters_present_flag if (!data) return kOk; *hrd_parameters_present = true; int cpb_cnt_minus1; READ_UE_OR_RETURN(&cpb_cnt_minus1); IN_RANGE_OR_RETURN(cpb_cnt_minus1, 0, 31); READ_BITS_OR_RETURN(8, &data); // bit_rate_scale, cpb_size_scale for (int i = 0; i <= cpb_cnt_minus1; ++i) { READ_UE_OR_RETURN(&data); // bit_rate_value_minus1[i] READ_UE_OR_RETURN(&data); // cpb_size_value_minus1[i] READ_BOOL_OR_RETURN(&data); // cbr_flag } READ_BITS_OR_RETURN(20, &data); // cpb/dpb delays, etc. return kOk; } H264Parser::Result H264Parser::ParseVUIParameters(H26xBitReader* br, H264Sps* sps) { bool aspect_ratio_info_present_flag; READ_BOOL_OR_RETURN(&aspect_ratio_info_present_flag); if (aspect_ratio_info_present_flag) { int aspect_ratio_idc; READ_BITS_OR_RETURN(8, &aspect_ratio_idc); if (aspect_ratio_idc == kExtendedSar) { READ_BITS_OR_RETURN(16, &sps->sar_width); READ_BITS_OR_RETURN(16, &sps->sar_height); } else { const int max_aspect_ratio_idc = arraysize(kTableSarWidth) - 1; IN_RANGE_OR_RETURN(aspect_ratio_idc, 0, max_aspect_ratio_idc); sps->sar_width = kTableSarWidth[aspect_ratio_idc]; sps->sar_height = kTableSarHeight[aspect_ratio_idc]; } } int data; // Read and ignore overscan and video signal type info. READ_BOOL_OR_RETURN(&data); // overscan_info_present_flag if (data) READ_BOOL_OR_RETURN(&data); // overscan_appropriate_flag READ_BOOL_OR_RETURN(&data); // video_signal_type_present_flag if (data) { READ_BITS_OR_RETURN(3, &data); // video_format READ_BOOL_OR_RETURN(&data); // video_full_range_flag READ_BOOL_OR_RETURN(&data); // colour_description_present_flag if (data) { READ_BITS_OR_RETURN(8, &data); // colour primaries READ_BITS_OR_RETURN(8, &sps->transfer_characteristics); READ_BITS_OR_RETURN(8, &data); // matrix coeffs } } READ_BOOL_OR_RETURN(&data); // chroma_loc_info_present_flag if (data) { READ_UE_OR_RETURN(&data); // chroma_sample_loc_type_top_field READ_UE_OR_RETURN(&data); // chroma_sample_loc_type_bottom_field } // Read and ignore timing info. READ_BOOL_OR_RETURN(&data); // timing_info_present_flag if (data) { READ_BITS_OR_RETURN(16, &data); // num_units_in_tick READ_BITS_OR_RETURN(16, &data); // num_units_in_tick READ_BITS_OR_RETURN(16, &data); // time_scale READ_BITS_OR_RETURN(16, &data); // time_scale READ_BOOL_OR_RETURN(&data); // fixed_frame_rate_flag } // Read and ignore NAL HRD parameters, if present. bool hrd_parameters_present = false; Result res = ParseAndIgnoreHRDParameters(br, &hrd_parameters_present); if (res != kOk) return res; // Read and ignore VCL HRD parameters, if present. res = ParseAndIgnoreHRDParameters(br, &hrd_parameters_present); if (res != kOk) return res; if (hrd_parameters_present) // One of NAL or VCL params present is enough. READ_BOOL_OR_RETURN(&data); // low_delay_hrd_flag READ_BOOL_OR_RETURN(&data); // pic_struct_present_flag READ_BOOL_OR_RETURN(&sps->bitstream_restriction_flag); if (sps->bitstream_restriction_flag) { READ_BOOL_OR_RETURN(&data); // motion_vectors_over_pic_boundaries_flag READ_UE_OR_RETURN(&data); // max_bytes_per_pic_denom READ_UE_OR_RETURN(&data); // max_bits_per_mb_denom READ_UE_OR_RETURN(&data); // log2_max_mv_length_horizontal READ_UE_OR_RETURN(&data); // log2_max_mv_length_vertical READ_UE_OR_RETURN(&sps->max_num_reorder_frames); READ_UE_OR_RETURN(&sps->max_dec_frame_buffering); TRUE_OR_RETURN(sps->max_dec_frame_buffering >= sps->max_num_ref_frames); IN_RANGE_OR_RETURN( sps->max_num_reorder_frames, 0, sps->max_dec_frame_buffering); } return kOk; } static void FillDefaultSeqScalingLists(H264Sps* sps) { for (int i = 0; i < 6; ++i) for (int j = 0; j < kH264ScalingList4x4Length; ++j) sps->scaling_list4x4[i][j] = 16; for (int i = 0; i < 6; ++i) for (int j = 0; j < kH264ScalingList8x8Length; ++j) sps->scaling_list8x8[i][j] = 16; } H264Parser::Result H264Parser::ParseSps(const Nalu& nalu, int* sps_id) { // See 7.4.2.1. int data; Result res; H26xBitReader reader; reader.Initialize(nalu.data() + nalu.header_size(), nalu.payload_size()); H26xBitReader* br = &reader; *sps_id = -1; std::unique_ptr sps(new H264Sps()); READ_BITS_OR_RETURN(8, &sps->profile_idc); READ_BOOL_OR_RETURN(&sps->constraint_set0_flag); READ_BOOL_OR_RETURN(&sps->constraint_set1_flag); READ_BOOL_OR_RETURN(&sps->constraint_set2_flag); READ_BOOL_OR_RETURN(&sps->constraint_set3_flag); READ_BOOL_OR_RETURN(&sps->constraint_set4_flag); READ_BOOL_OR_RETURN(&sps->constraint_set5_flag); READ_BITS_OR_RETURN(2, &data); // reserved_zero_2bits READ_BITS_OR_RETURN(8, &sps->level_idc); READ_UE_OR_RETURN(&sps->seq_parameter_set_id); TRUE_OR_RETURN(sps->seq_parameter_set_id < 32); if (sps->profile_idc == 100 || sps->profile_idc == 110 || sps->profile_idc == 122 || sps->profile_idc == 244 || sps->profile_idc == 44 || sps->profile_idc == 83 || sps->profile_idc == 86 || sps->profile_idc == 118 || sps->profile_idc == 128) { READ_UE_OR_RETURN(&sps->chroma_format_idc); TRUE_OR_RETURN(sps->chroma_format_idc < 4); if (sps->chroma_format_idc == 3) READ_BOOL_OR_RETURN(&sps->separate_colour_plane_flag); READ_UE_OR_RETURN(&sps->bit_depth_luma_minus8); TRUE_OR_RETURN(sps->bit_depth_luma_minus8 < 7); READ_UE_OR_RETURN(&sps->bit_depth_chroma_minus8); TRUE_OR_RETURN(sps->bit_depth_chroma_minus8 < 7); READ_BOOL_OR_RETURN(&sps->qpprime_y_zero_transform_bypass_flag); READ_BOOL_OR_RETURN(&sps->seq_scaling_matrix_present_flag); if (sps->seq_scaling_matrix_present_flag) { DVLOG(4) << "Scaling matrix present"; res = ParseSpsScalingLists(br, sps.get()); if (res != kOk) return res; } else { FillDefaultSeqScalingLists(sps.get()); } } else { sps->chroma_format_idc = 1; FillDefaultSeqScalingLists(sps.get()); } if (sps->separate_colour_plane_flag) sps->chroma_array_type = 0; else sps->chroma_array_type = sps->chroma_format_idc; READ_UE_OR_RETURN(&sps->log2_max_frame_num_minus4); TRUE_OR_RETURN(sps->log2_max_frame_num_minus4 < 13); READ_UE_OR_RETURN(&sps->pic_order_cnt_type); TRUE_OR_RETURN(sps->pic_order_cnt_type < 3); sps->expected_delta_per_pic_order_cnt_cycle = 0; if (sps->pic_order_cnt_type == 0) { READ_UE_OR_RETURN(&sps->log2_max_pic_order_cnt_lsb_minus4); TRUE_OR_RETURN(sps->log2_max_pic_order_cnt_lsb_minus4 < 13); } else if (sps->pic_order_cnt_type == 1) { READ_BOOL_OR_RETURN(&sps->delta_pic_order_always_zero_flag); READ_SE_OR_RETURN(&sps->offset_for_non_ref_pic); READ_SE_OR_RETURN(&sps->offset_for_top_to_bottom_field); READ_UE_OR_RETURN(&sps->num_ref_frames_in_pic_order_cnt_cycle); TRUE_OR_RETURN(sps->num_ref_frames_in_pic_order_cnt_cycle < 255); for (int i = 0; i < sps->num_ref_frames_in_pic_order_cnt_cycle; ++i) { READ_SE_OR_RETURN(&sps->offset_for_ref_frame[i]); sps->expected_delta_per_pic_order_cnt_cycle += sps->offset_for_ref_frame[i]; } } READ_UE_OR_RETURN(&sps->max_num_ref_frames); READ_BOOL_OR_RETURN(&sps->gaps_in_frame_num_value_allowed_flag); READ_UE_OR_RETURN(&sps->pic_width_in_mbs_minus1); READ_UE_OR_RETURN(&sps->pic_height_in_map_units_minus1); READ_BOOL_OR_RETURN(&sps->frame_mbs_only_flag); if (!sps->frame_mbs_only_flag) READ_BOOL_OR_RETURN(&sps->mb_adaptive_frame_field_flag); READ_BOOL_OR_RETURN(&sps->direct_8x8_inference_flag); READ_BOOL_OR_RETURN(&sps->frame_cropping_flag); if (sps->frame_cropping_flag) { READ_UE_OR_RETURN(&sps->frame_crop_left_offset); READ_UE_OR_RETURN(&sps->frame_crop_right_offset); READ_UE_OR_RETURN(&sps->frame_crop_top_offset); READ_UE_OR_RETURN(&sps->frame_crop_bottom_offset); } READ_BOOL_OR_RETURN(&sps->vui_parameters_present_flag); if (sps->vui_parameters_present_flag) { DVLOG(4) << "VUI parameters present"; res = ParseVUIParameters(br, sps.get()); if (res != kOk) return res; } // If an SPS with the same id already exists, replace it. *sps_id = sps->seq_parameter_set_id; active_SPSes_[*sps_id] = std::move(sps); return kOk; } H264Parser::Result H264Parser::ParsePps(const Nalu& nalu, int* pps_id) { // See 7.4.2.2. const H264Sps* sps; Result res; H26xBitReader reader; reader.Initialize(nalu.data() + nalu.header_size(), nalu.payload_size()); H26xBitReader* br = &reader; *pps_id = -1; std::unique_ptr pps(new H264Pps()); READ_UE_OR_RETURN(&pps->pic_parameter_set_id); READ_UE_OR_RETURN(&pps->seq_parameter_set_id); TRUE_OR_RETURN(pps->seq_parameter_set_id < 32); sps = GetSps(pps->seq_parameter_set_id); TRUE_OR_RETURN(sps); READ_BOOL_OR_RETURN(&pps->entropy_coding_mode_flag); READ_BOOL_OR_RETURN(&pps->bottom_field_pic_order_in_frame_present_flag); READ_UE_OR_RETURN(&pps->num_slice_groups_minus1); if (pps->num_slice_groups_minus1 > 1) { LOG_ERROR_ONCE("Slice groups not supported"); return kUnsupportedStream; } READ_UE_OR_RETURN(&pps->num_ref_idx_l0_default_active_minus1); TRUE_OR_RETURN(pps->num_ref_idx_l0_default_active_minus1 < 32); READ_UE_OR_RETURN(&pps->num_ref_idx_l1_default_active_minus1); TRUE_OR_RETURN(pps->num_ref_idx_l1_default_active_minus1 < 32); READ_BOOL_OR_RETURN(&pps->weighted_pred_flag); READ_BITS_OR_RETURN(2, &pps->weighted_bipred_idc); TRUE_OR_RETURN(pps->weighted_bipred_idc < 3); READ_SE_OR_RETURN(&pps->pic_init_qp_minus26); IN_RANGE_OR_RETURN(pps->pic_init_qp_minus26, -26, 25); READ_SE_OR_RETURN(&pps->pic_init_qs_minus26); IN_RANGE_OR_RETURN(pps->pic_init_qs_minus26, -26, 25); READ_SE_OR_RETURN(&pps->chroma_qp_index_offset); IN_RANGE_OR_RETURN(pps->chroma_qp_index_offset, -12, 12); pps->second_chroma_qp_index_offset = pps->chroma_qp_index_offset; READ_BOOL_OR_RETURN(&pps->deblocking_filter_control_present_flag); READ_BOOL_OR_RETURN(&pps->constrained_intra_pred_flag); READ_BOOL_OR_RETURN(&pps->redundant_pic_cnt_present_flag); if (br->HasMoreRBSPData()) { READ_BOOL_OR_RETURN(&pps->transform_8x8_mode_flag); READ_BOOL_OR_RETURN(&pps->pic_scaling_matrix_present_flag); if (pps->pic_scaling_matrix_present_flag) { DVLOG(4) << "Picture scaling matrix present"; res = ParsePpsScalingLists(br, *sps, pps.get()); if (res != kOk) return res; } READ_SE_OR_RETURN(&pps->second_chroma_qp_index_offset); } // If a PPS with the same id already exists, replace it. *pps_id = pps->pic_parameter_set_id; active_PPSes_[*pps_id] = std::move(pps); return kOk; } H264Parser::Result H264Parser::ParseRefPicListModification( H26xBitReader* br, int num_ref_idx_active_minus1, H264ModificationOfPicNum* ref_list_mods) { H264ModificationOfPicNum* pic_num_mod; if (num_ref_idx_active_minus1 >= 32) return kInvalidStream; for (int i = 0; i < 32; ++i) { pic_num_mod = &ref_list_mods[i]; READ_UE_OR_RETURN(&pic_num_mod->modification_of_pic_nums_idc); TRUE_OR_RETURN(pic_num_mod->modification_of_pic_nums_idc < 4); switch (pic_num_mod->modification_of_pic_nums_idc) { case 0: case 1: READ_UE_OR_RETURN(&pic_num_mod->abs_diff_pic_num_minus1); break; case 2: READ_UE_OR_RETURN(&pic_num_mod->long_term_pic_num); break; case 3: // Per spec, list cannot be empty. if (i == 0) return kInvalidStream; return kOk; default: return kInvalidStream; } } // If we got here, we didn't get loop end marker prematurely, // so make sure it is there for our client. int modification_of_pic_nums_idc; READ_UE_OR_RETURN(&modification_of_pic_nums_idc); TRUE_OR_RETURN(modification_of_pic_nums_idc == 3); return kOk; } H264Parser::Result H264Parser::ParseRefPicListModifications( H26xBitReader* br, H264SliceHeader* shdr) { Result res; if (!shdr->IsISlice() && !shdr->IsSISlice()) { READ_BOOL_OR_RETURN(&shdr->ref_pic_list_modification_flag_l0); if (shdr->ref_pic_list_modification_flag_l0) { res = ParseRefPicListModification(br, shdr->num_ref_idx_l0_active_minus1, shdr->ref_list_l0_modifications); if (res != kOk) return res; } } if (shdr->IsBSlice()) { READ_BOOL_OR_RETURN(&shdr->ref_pic_list_modification_flag_l1); if (shdr->ref_pic_list_modification_flag_l1) { res = ParseRefPicListModification(br, shdr->num_ref_idx_l1_active_minus1, shdr->ref_list_l1_modifications); if (res != kOk) return res; } } return kOk; } H264Parser::Result H264Parser::ParseWeightingFactors( H26xBitReader* br, int num_ref_idx_active_minus1, int chroma_array_type, int luma_log2_weight_denom, int chroma_log2_weight_denom, H264WeightingFactors* w_facts) { int def_luma_weight = 1 << luma_log2_weight_denom; int def_chroma_weight = 1 << chroma_log2_weight_denom; for (int i = 0; i < num_ref_idx_active_minus1 + 1; ++i) { READ_BOOL_OR_RETURN(&w_facts->luma_weight_flag[i]); if (w_facts->luma_weight_flag[i]) { READ_SE_OR_RETURN(&w_facts->luma_weight[i]); IN_RANGE_OR_RETURN(w_facts->luma_weight[i], -128, 127); READ_SE_OR_RETURN(&w_facts->luma_offset[i]); IN_RANGE_OR_RETURN(w_facts->luma_offset[i], -128, 127); } else { w_facts->luma_weight[i] = def_luma_weight; w_facts->luma_offset[i] = 0; } if (chroma_array_type != 0) { READ_BOOL_OR_RETURN(&w_facts->chroma_weight_flag[i]); if (w_facts->chroma_weight_flag[i]) { for (int j = 0; j < 2; ++j) { READ_SE_OR_RETURN(&w_facts->chroma_weight[i][j]); IN_RANGE_OR_RETURN(w_facts->chroma_weight[i][j], -128, 127); READ_SE_OR_RETURN(&w_facts->chroma_offset[i][j]); IN_RANGE_OR_RETURN(w_facts->chroma_offset[i][j], -128, 127); } } else { for (int j = 0; j < 2; ++j) { w_facts->chroma_weight[i][j] = def_chroma_weight; w_facts->chroma_offset[i][j] = 0; } } } } return kOk; } H264Parser::Result H264Parser::ParsePredWeightTable(H26xBitReader* br, const H264Sps& sps, H264SliceHeader* shdr) { READ_UE_OR_RETURN(&shdr->luma_log2_weight_denom); TRUE_OR_RETURN(shdr->luma_log2_weight_denom < 8); if (sps.chroma_array_type != 0) READ_UE_OR_RETURN(&shdr->chroma_log2_weight_denom); TRUE_OR_RETURN(shdr->chroma_log2_weight_denom < 8); Result res = ParseWeightingFactors(br, shdr->num_ref_idx_l0_active_minus1, sps.chroma_array_type, shdr->luma_log2_weight_denom, shdr->chroma_log2_weight_denom, &shdr->pred_weight_table_l0); if (res != kOk) return res; if (shdr->IsBSlice()) { res = ParseWeightingFactors(br, shdr->num_ref_idx_l1_active_minus1, sps.chroma_array_type, shdr->luma_log2_weight_denom, shdr->chroma_log2_weight_denom, &shdr->pred_weight_table_l1); if (res != kOk) return res; } return kOk; } H264Parser::Result H264Parser::ParseDecRefPicMarking(H26xBitReader* br, H264SliceHeader* shdr) { if (shdr->idr_pic_flag) { READ_BOOL_OR_RETURN(&shdr->no_output_of_prior_pics_flag); READ_BOOL_OR_RETURN(&shdr->long_term_reference_flag); } else { READ_BOOL_OR_RETURN(&shdr->adaptive_ref_pic_marking_mode_flag); H264DecRefPicMarking* marking; if (shdr->adaptive_ref_pic_marking_mode_flag) { size_t i; for (i = 0; i < arraysize(shdr->ref_pic_marking); ++i) { marking = &shdr->ref_pic_marking[i]; READ_UE_OR_RETURN(&marking->memory_mgmnt_control_operation); if (marking->memory_mgmnt_control_operation == 0) break; if (marking->memory_mgmnt_control_operation == 1 || marking->memory_mgmnt_control_operation == 3) READ_UE_OR_RETURN(&marking->difference_of_pic_nums_minus1); if (marking->memory_mgmnt_control_operation == 2) READ_UE_OR_RETURN(&marking->long_term_pic_num); if (marking->memory_mgmnt_control_operation == 3 || marking->memory_mgmnt_control_operation == 6) READ_UE_OR_RETURN(&marking->long_term_frame_idx); if (marking->memory_mgmnt_control_operation == 4) READ_UE_OR_RETURN(&marking->max_long_term_frame_idx_plus1); if (marking->memory_mgmnt_control_operation > 6) return kInvalidStream; } if (i == arraysize(shdr->ref_pic_marking)) { LOG_ERROR_ONCE("Ran out of dec ref pic marking fields"); return kUnsupportedStream; } } } return kOk; } H264Parser::Result H264Parser::ParseSliceHeader(const Nalu& nalu, H264SliceHeader* shdr) { // See 7.4.3. const H264Sps* sps; const H264Pps* pps; Result res; H26xBitReader reader; reader.Initialize(nalu.data() + nalu.header_size(), nalu.payload_size()); H26xBitReader* br = &reader; memset(reinterpret_cast(shdr), 0, sizeof(*shdr)); shdr->idr_pic_flag = (nalu.type() == 5); shdr->nal_ref_idc = nalu.ref_idc(); shdr->nalu_data = nalu.data(); shdr->nalu_size = nalu.header_size() + nalu.payload_size(); READ_UE_OR_RETURN(&shdr->first_mb_in_slice); READ_UE_OR_RETURN(&shdr->slice_type); TRUE_OR_RETURN(shdr->slice_type < 10); READ_UE_OR_RETURN(&shdr->pic_parameter_set_id); pps = GetPps(shdr->pic_parameter_set_id); TRUE_OR_RETURN(pps); sps = GetSps(pps->seq_parameter_set_id); TRUE_OR_RETURN(sps); if (sps->separate_colour_plane_flag) { LOG_ERROR_ONCE("Interlaced streams not supported"); return kUnsupportedStream; } READ_BITS_OR_RETURN(sps->log2_max_frame_num_minus4 + 4, &shdr->frame_num); if (!sps->frame_mbs_only_flag) { READ_BOOL_OR_RETURN(&shdr->field_pic_flag); if (shdr->field_pic_flag) { LOG_ERROR_ONCE("Interlaced streams not supported"); return kUnsupportedStream; } } if (shdr->idr_pic_flag) READ_UE_OR_RETURN(&shdr->idr_pic_id); if (sps->pic_order_cnt_type == 0) { READ_BITS_OR_RETURN(sps->log2_max_pic_order_cnt_lsb_minus4 + 4, &shdr->pic_order_cnt_lsb); if (pps->bottom_field_pic_order_in_frame_present_flag && !shdr->field_pic_flag) READ_SE_OR_RETURN(&shdr->delta_pic_order_cnt_bottom); } if (sps->pic_order_cnt_type == 1 && !sps->delta_pic_order_always_zero_flag) { READ_SE_OR_RETURN(&shdr->delta_pic_order_cnt[0]); if (pps->bottom_field_pic_order_in_frame_present_flag && !shdr->field_pic_flag) READ_SE_OR_RETURN(&shdr->delta_pic_order_cnt[1]); } if (pps->redundant_pic_cnt_present_flag) { READ_UE_OR_RETURN(&shdr->redundant_pic_cnt); TRUE_OR_RETURN(shdr->redundant_pic_cnt < 128); } if (shdr->IsBSlice()) READ_BOOL_OR_RETURN(&shdr->direct_spatial_mv_pred_flag); if (shdr->IsPSlice() || shdr->IsSPSlice() || shdr->IsBSlice()) { READ_BOOL_OR_RETURN(&shdr->num_ref_idx_active_override_flag); if (shdr->num_ref_idx_active_override_flag) { READ_UE_OR_RETURN(&shdr->num_ref_idx_l0_active_minus1); if (shdr->IsBSlice()) READ_UE_OR_RETURN(&shdr->num_ref_idx_l1_active_minus1); } else { shdr->num_ref_idx_l0_active_minus1 = pps->num_ref_idx_l0_default_active_minus1; if (shdr->IsBSlice()) { shdr->num_ref_idx_l1_active_minus1 = pps->num_ref_idx_l1_default_active_minus1; } } } if (shdr->field_pic_flag) { TRUE_OR_RETURN(shdr->num_ref_idx_l0_active_minus1 < 32); TRUE_OR_RETURN(shdr->num_ref_idx_l1_active_minus1 < 32); } else { TRUE_OR_RETURN(shdr->num_ref_idx_l0_active_minus1 < 16); TRUE_OR_RETURN(shdr->num_ref_idx_l1_active_minus1 < 16); } if (nalu.type() == Nalu::H264_CodedSliceExtension) { return kUnsupportedStream; } else { res = ParseRefPicListModifications(br, shdr); if (res != kOk) return res; } if ((pps->weighted_pred_flag && (shdr->IsPSlice() || shdr->IsSPSlice())) || (pps->weighted_bipred_idc == 1 && shdr->IsBSlice())) { res = ParsePredWeightTable(br, *sps, shdr); if (res != kOk) return res; } if (nalu.ref_idc() != 0) { res = ParseDecRefPicMarking(br, shdr); if (res != kOk) return res; } if (pps->entropy_coding_mode_flag && !shdr->IsISlice() && !shdr->IsSISlice()) { READ_UE_OR_RETURN(&shdr->cabac_init_idc); TRUE_OR_RETURN(shdr->cabac_init_idc < 3); } READ_SE_OR_RETURN(&shdr->slice_qp_delta); if (shdr->IsSPSlice() || shdr->IsSISlice()) { if (shdr->IsSPSlice()) READ_BOOL_OR_RETURN(&shdr->sp_for_switch_flag); READ_SE_OR_RETURN(&shdr->slice_qs_delta); } if (pps->deblocking_filter_control_present_flag) { READ_UE_OR_RETURN(&shdr->disable_deblocking_filter_idc); TRUE_OR_RETURN(shdr->disable_deblocking_filter_idc < 3); if (shdr->disable_deblocking_filter_idc != 1) { READ_SE_OR_RETURN(&shdr->slice_alpha_c0_offset_div2); IN_RANGE_OR_RETURN(shdr->slice_alpha_c0_offset_div2, -6, 6); READ_SE_OR_RETURN(&shdr->slice_beta_offset_div2); IN_RANGE_OR_RETURN(shdr->slice_beta_offset_div2, -6, 6); } } if (pps->num_slice_groups_minus1 > 0) { LOG_ERROR_ONCE("Slice groups not supported"); return kUnsupportedStream; } shdr->header_bit_size = nalu.payload_size() * 8 - br->NumBitsLeft(); return kOk; } H264Parser::Result H264Parser::ParseSEI(const Nalu& nalu, H264SEIMessage* sei_msg) { int byte; H26xBitReader reader; reader.Initialize(nalu.data() + nalu.header_size(), nalu.payload_size()); H26xBitReader* br = &reader; memset(reinterpret_cast(sei_msg), 0, sizeof(*sei_msg)); READ_BITS_OR_RETURN(8, &byte); while (byte == 0xff) { sei_msg->type += 255; READ_BITS_OR_RETURN(8, &byte); } sei_msg->type += byte; READ_BITS_OR_RETURN(8, &byte); while (byte == 0xff) { sei_msg->payload_size += 255; READ_BITS_OR_RETURN(8, &byte); } sei_msg->payload_size += byte; DVLOG(4) << "Found SEI message type: " << sei_msg->type << " payload size: " << sei_msg->payload_size; switch (sei_msg->type) { case H264SEIMessage::kSEIRecoveryPoint: READ_UE_OR_RETURN(&sei_msg->recovery_point.recovery_frame_cnt); READ_BOOL_OR_RETURN(&sei_msg->recovery_point.exact_match_flag); READ_BOOL_OR_RETURN(&sei_msg->recovery_point.broken_link_flag); READ_BITS_OR_RETURN(2, &sei_msg->recovery_point.changing_slice_group_idc); break; default: DVLOG(4) << "Unsupported SEI message"; break; } return kOk; } } // namespace media } // namespace shaka