// Copyright 2014 Google Inc. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file or at // https://developers.google.com/open-source/licenses/bsd #include #include "packager/base/logging.h" #include "packager/base/memory/scoped_ptr.h" #include "packager/base/strings/string_number_conversions.h" #include "packager/media/base/aes_encryptor.h" #include "packager/media/base/aes_decryptor.h" namespace { const uint32_t kAesBlockSize = 16; // From NIST SP 800-38a test case: - F.5.1 CTR-AES128.Encrypt // http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf const uint8_t kAesKey[] = {0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c}; const uint8_t kAesIv[] = {0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff}; const uint8_t kAesCtrPlaintext[] = { // Block #1 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a, // Block #2 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51, // Block #3 0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef, // Block #4 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10}; const uint8_t kAesCtrCiphertext[] = { // Block #1 0x87, 0x4d, 0x61, 0x91, 0xb6, 0x20, 0xe3, 0x26, 0x1b, 0xef, 0x68, 0x64, 0x99, 0x0d, 0xb6, 0xce, // Block #2 0x98, 0x06, 0xf6, 0x6b, 0x79, 0x70, 0xfd, 0xff, 0x86, 0x17, 0x18, 0x7b, 0xb9, 0xff, 0xfd, 0xff, // Block #3 0x5a, 0xe4, 0xdf, 0x3e, 0xdb, 0xd5, 0xd3, 0x5e, 0x5b, 0x4f, 0x09, 0x02, 0x0d, 0xb0, 0x3e, 0xab, // Block #4 0x1e, 0x03, 0x1d, 0xda, 0x2f, 0xbe, 0x03, 0xd1, 0x79, 0x21, 0x70, 0xa0, 0xf3, 0x00, 0x9c, 0xee}; // Subsample test cases. struct SubsampleTestCase { const uint8_t* subsample_sizes; uint32_t subsample_count; }; const uint8_t kSubsampleTest1[] = {64}; const uint8_t kSubsampleTest2[] = {13, 51}; const uint8_t kSubsampleTest3[] = {52, 12}; const uint8_t kSubsampleTest4[] = {16, 48}; const uint8_t kSubsampleTest5[] = {3, 16, 45}; const uint8_t kSubsampleTest6[] = {18, 12, 34}; const uint8_t kSubsampleTest7[] = {8, 16, 2, 38}; const uint8_t kSubsampleTest8[] = {10, 1, 33, 20}; const uint8_t kSubsampleTest9[] = {7, 19, 6, 32}; const uint8_t kSubsampleTest10[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9}; const SubsampleTestCase kSubsampleTestCases[] = { {kSubsampleTest1, arraysize(kSubsampleTest1)}, {kSubsampleTest2, arraysize(kSubsampleTest2)}, {kSubsampleTest3, arraysize(kSubsampleTest3)}, {kSubsampleTest4, arraysize(kSubsampleTest4)}, {kSubsampleTest5, arraysize(kSubsampleTest5)}, {kSubsampleTest6, arraysize(kSubsampleTest6)}, {kSubsampleTest7, arraysize(kSubsampleTest7)}, {kSubsampleTest8, arraysize(kSubsampleTest8)}, {kSubsampleTest9, arraysize(kSubsampleTest9)}, {kSubsampleTest10, arraysize(kSubsampleTest10)}}; // IV test values. const uint32_t kTextSizeInBytes = 60; // 3 full blocks + 1 partial block. const uint8_t kIv128Zero[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; const uint8_t kIv128Two[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2}; const uint8_t kIv128Four[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4}; const uint8_t kIv128Max64[] = {0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; const uint8_t kIv128OneAndThree[] = {0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3}; const uint8_t kIv128MaxMinusOne[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe}; const uint8_t kIv64Zero[] = {0, 0, 0, 0, 0, 0, 0, 0}; const uint8_t kIv64One[] = {0, 0, 0, 0, 0, 0, 0, 1}; const uint8_t kIv64MaxMinusOne[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe}; const uint8_t kIv64Max[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; struct IvTestCase { const uint8_t* iv_test; uint32_t iv_size; const uint8_t* iv_expected; }; // As recommended in ISO/IEC FDIS 23001-7: CENC spec, // For 64-bit (8-byte) IV_Sizes, initialization vectors for subsequent samples // can be created by incrementing the initialization vector of the previous // sample. For 128-bit (16-byte) IV_Sizes, initialization vectors for subsequent // samples should be created by adding the block count of the previous sample to // the initialization vector of the previous sample. const IvTestCase kIvTestCases[] = { {kIv128Zero, arraysize(kIv128Zero), kIv128Four}, {kIv128Max64, arraysize(kIv128Max64), kIv128OneAndThree}, {kIv128MaxMinusOne, arraysize(kIv128MaxMinusOne), kIv128Two}, {kIv64Zero, arraysize(kIv64Zero), kIv64One}, {kIv64MaxMinusOne, arraysize(kIv64MaxMinusOne), kIv64Max}, {kIv64Max, arraysize(kIv64Max), kIv64Zero}}; // We support AES 128, i.e. 16 bytes key only. const uint8_t kInvalidKey[] = {0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09}; // We support Iv of size 8 or 16 only as defined in CENC spec. const uint8_t kInvalidIv[] = {0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe}; } // namespace namespace edash_packager { namespace media { class AesCtrEncryptorTest : public testing::Test { public: void SetUp() override { key_.assign(kAesKey, kAesKey + arraysize(kAesKey)); iv_.assign(kAesIv, kAesIv + arraysize(kAesIv)); plaintext_.assign(kAesCtrPlaintext, kAesCtrPlaintext + arraysize(kAesCtrPlaintext)); ciphertext_.assign(kAesCtrCiphertext, kAesCtrCiphertext + arraysize(kAesCtrCiphertext)); ASSERT_TRUE(encryptor_.InitializeWithIv(key_, iv_)); ASSERT_TRUE(decryptor_.InitializeWithIv(key_, iv_)); } protected: std::vector key_; std::vector iv_; std::vector plaintext_; std::vector ciphertext_; AesCtrEncryptor encryptor_; AesCtrDecryptor decryptor_; }; TEST_F(AesCtrEncryptorTest, NistTestCase) { std::vector encrypted; ASSERT_TRUE(encryptor_.Crypt(plaintext_, &encrypted)); EXPECT_EQ(ciphertext_, encrypted); ASSERT_TRUE(decryptor_.SetIv(iv_)); std::vector decrypted; ASSERT_TRUE(decryptor_.Crypt(encrypted, &decrypted)); EXPECT_EQ(plaintext_, decrypted); } TEST_F(AesCtrEncryptorTest, NistTestCaseInplaceEncryptionDecryption) { std::vector buffer = plaintext_; ASSERT_TRUE(encryptor_.Crypt(&buffer[0], buffer.size(), &buffer[0])); EXPECT_EQ(ciphertext_, buffer); ASSERT_TRUE(decryptor_.SetIv(iv_)); ASSERT_TRUE(decryptor_.Crypt(&buffer[0], buffer.size(), &buffer[0])); EXPECT_EQ(plaintext_, buffer); } TEST_F(AesCtrEncryptorTest, EncryptDecryptString) { static const char kPlaintext[] = "normal plaintext of random length"; static const char kExpectedCiphertextInHex[] = "82E3AD1EF90C5CC09EB37F1B9EFBD99016441A1C15123F0777CD57BB993E14DA02"; std::string ciphertext; ASSERT_TRUE(encryptor_.Crypt(kPlaintext, &ciphertext)); EXPECT_EQ(kExpectedCiphertextInHex, base::HexEncode(ciphertext.data(), ciphertext.size())); std::string decrypted; ASSERT_TRUE(decryptor_.SetIv(iv_)); ASSERT_TRUE(decryptor_.Crypt(ciphertext, &decrypted)); EXPECT_EQ(kPlaintext, decrypted); } TEST_F(AesCtrEncryptorTest, 128BitIVBoundaryCaseEncryption) { // There are four blocks of text in |plaintext_|. The first block should be // encrypted with IV = kIv128Max64, the subsequent blocks should be encrypted // with iv 0 to 3. std::vector iv_max64(kIv128Max64, kIv128Max64 + arraysize(kIv128Max64)); ASSERT_TRUE(encryptor_.InitializeWithIv(key_, iv_max64)); std::vector encrypted; ASSERT_TRUE(encryptor_.Crypt(plaintext_, &encrypted)); std::vector iv_one_and_three( kIv128OneAndThree, kIv128OneAndThree + arraysize(kIv128OneAndThree)); encryptor_.UpdateIv(); EXPECT_EQ(iv_one_and_three, encryptor_.iv()); ASSERT_TRUE(encryptor_.InitializeWithIv(key_, iv_max64)); std::vector encrypted_verify(plaintext_.size(), 0); ASSERT_TRUE( encryptor_.Crypt(&plaintext_[0], kAesBlockSize, &encrypted_verify[0])); std::vector iv_zero(kIv128Zero, kIv128Zero + arraysize(kIv128Zero)); ASSERT_TRUE(encryptor_.InitializeWithIv(key_, iv_zero)); ASSERT_TRUE(encryptor_.Crypt(&plaintext_[kAesBlockSize], kAesBlockSize * 3, &encrypted_verify[kAesBlockSize])); EXPECT_EQ(encrypted, encrypted_verify); } TEST_F(AesCtrEncryptorTest, InitWithRandomIv) { const uint8_t kIvSize = 8; ASSERT_TRUE(encryptor_.InitializeWithRandomIv(key_, kIvSize)); ASSERT_EQ(kIvSize, encryptor_.iv().size()); LOG(INFO) << "Random IV: " << base::HexEncode(&encryptor_.iv()[0], encryptor_.iv().size()); } TEST_F(AesCtrEncryptorTest, UnsupportedKeySize) { std::vector key(kInvalidKey, kInvalidKey + arraysize(kInvalidKey)); ASSERT_FALSE(encryptor_.InitializeWithIv(key, iv_)); } TEST_F(AesCtrEncryptorTest, UnsupportedIV) { std::vector iv(kInvalidIv, kInvalidIv + arraysize(kInvalidIv)); ASSERT_FALSE(encryptor_.InitializeWithIv(key_, iv)); } TEST_F(AesCtrEncryptorTest, IncorrectIvSize) { ASSERT_FALSE(encryptor_.InitializeWithRandomIv(key_, 15)); } class AesCtrEncryptorSubsampleTest : public AesCtrEncryptorTest, public ::testing::WithParamInterface {}; TEST_P(AesCtrEncryptorSubsampleTest, NistTestCaseSubsamples) { const SubsampleTestCase* test_case = &GetParam(); std::vector encrypted(plaintext_.size(), 0); for (uint32_t i = 0, offset = 0; i < test_case->subsample_count; ++i) { uint32_t len = test_case->subsample_sizes[i]; ASSERT_TRUE(encryptor_.Crypt(&plaintext_[offset], len, &encrypted[offset])); offset += len; EXPECT_EQ(offset % kAesBlockSize, encryptor_.block_offset()); } EXPECT_EQ(ciphertext_, encrypted); ASSERT_TRUE(decryptor_.SetIv(iv_)); std::vector decrypted(encrypted.size(), 0); for (uint32_t i = 0, offset = 0; i < test_case->subsample_count; ++i) { uint32_t len = test_case->subsample_sizes[i]; ASSERT_TRUE(decryptor_.Crypt(&encrypted[offset], len, &decrypted[offset])); offset += len; EXPECT_EQ(offset % kAesBlockSize, decryptor_.block_offset()); } EXPECT_EQ(plaintext_, decrypted); } INSTANTIATE_TEST_CASE_P(SubsampleTestCases, AesCtrEncryptorSubsampleTest, ::testing::ValuesIn(kSubsampleTestCases)); class AesCtrEncryptorIvTest : public ::testing::TestWithParam {}; TEST_P(AesCtrEncryptorIvTest, IvTest) { // Some dummy key and plaintext. std::vector key(16, 1); std::vector plaintext(kTextSizeInBytes, 3); std::vector iv_test(GetParam().iv_test, GetParam().iv_test + GetParam().iv_size); std::vector iv_expected(GetParam().iv_expected, GetParam().iv_expected + GetParam().iv_size); AesCtrEncryptor encryptor; ASSERT_TRUE(encryptor.InitializeWithIv(key, iv_test)); std::vector encrypted; ASSERT_TRUE(encryptor.Crypt(plaintext, &encrypted)); encryptor.UpdateIv(); EXPECT_EQ(iv_expected, encryptor.iv()); } INSTANTIATE_TEST_CASE_P(IvTestCases, AesCtrEncryptorIvTest, ::testing::ValuesIn(kIvTestCases)); class AesCbcTest : public ::testing::Test { public: AesCbcTest() : encryptor_(new AesCbcEncryptor(kPkcs5Padding, !kChainAcrossCalls)), decryptor_(new AesCbcDecryptor(kPkcs5Padding, !kChainAcrossCalls)), key_(kAesKey, kAesKey + arraysize(kAesKey)), iv_(kAesIv, kAesIv + arraysize(kAesIv)) {} void TestEncryptDecrypt(const std::vector& plaintext, const std::vector& expected_ciphertext) { // Test Vector form. TestEncryptDecryptSeparateBuffers(plaintext, expected_ciphertext); TestEncryptDecryptInPlace(plaintext, expected_ciphertext); // Test string form. std::string plaintext_str(plaintext.begin(), plaintext.end()); std::string expected_ciphertext_str(expected_ciphertext.begin(), expected_ciphertext.end()); TestEncryptDecryptSeparateBuffers(plaintext_str, expected_ciphertext_str); TestEncryptDecryptInPlace(plaintext_str, expected_ciphertext_str); } protected: template void TestEncryptDecryptSeparateBuffers(const T& plaintext, const T& expected_ciphertext) { ASSERT_TRUE(encryptor_->InitializeWithIv(key_, iv_)); ASSERT_TRUE(decryptor_->InitializeWithIv(key_, iv_)); T encrypted; ASSERT_TRUE(encryptor_->Crypt(plaintext, &encrypted)); EXPECT_EQ(expected_ciphertext, encrypted); T decrypted; ASSERT_TRUE(decryptor_->Crypt(encrypted, &decrypted)); EXPECT_EQ(plaintext, decrypted); } template void TestEncryptDecryptInPlace(const T& plaintext, const T& expected_ciphertext) { ASSERT_TRUE(encryptor_->InitializeWithIv(key_, iv_)); ASSERT_TRUE(decryptor_->InitializeWithIv(key_, iv_)); T buffer(plaintext); ASSERT_TRUE(encryptor_->Crypt(buffer, &buffer)); EXPECT_EQ(expected_ciphertext, buffer); ASSERT_TRUE(decryptor_->Crypt(buffer, &buffer)); EXPECT_EQ(plaintext, buffer); } scoped_ptr encryptor_; scoped_ptr decryptor_; std::vector key_; std::vector iv_; }; TEST_F(AesCbcTest, Aes256CbcPkcs5) { // NIST SP 800-38A test vector F.2.5 CBC-AES256.Encrypt. static const uint8_t kAesCbcKey[] = { 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81, 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4}; static const uint8_t kAesCbcIv[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f}; static const uint8_t kAesCbcPlaintext[] = { // Block #1 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a, // Block #2 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51, // Block #3 0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef, // Block #4 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10}; static const uint8_t kAesCbcCiphertext[] = { // Block #1 0xf5, 0x8c, 0x4c, 0x04, 0xd6, 0xe5, 0xf1, 0xba, 0x77, 0x9e, 0xab, 0xfb, 0x5f, 0x7b, 0xfb, 0xd6, // Block #2 0x9c, 0xfc, 0x4e, 0x96, 0x7e, 0xdb, 0x80, 0x8d, 0x67, 0x9f, 0x77, 0x7b, 0xc6, 0x70, 0x2c, 0x7d, // Block #3 0x39, 0xf2, 0x33, 0x69, 0xa9, 0xd9, 0xba, 0xcf, 0xa5, 0x30, 0xe2, 0x63, 0x04, 0x23, 0x14, 0x61, // Block #4 0xb2, 0xeb, 0x05, 0xe2, 0xc3, 0x9b, 0xe9, 0xfc, 0xda, 0x6c, 0x19, 0x07, 0x8c, 0x6a, 0x9d, 0x1b, // PKCS #5 padding, encrypted. 0x3f, 0x46, 0x17, 0x96, 0xd6, 0xb0, 0xd6, 0xb2, 0xe0, 0xc2, 0xa7, 0x2b, 0x4d, 0x80, 0xe6, 0x44}; key_.assign(kAesCbcKey, kAesCbcKey + arraysize(kAesCbcKey)); iv_.assign(kAesCbcIv, kAesCbcIv + arraysize(kAesCbcIv)); const std::vector plaintext( kAesCbcPlaintext, kAesCbcPlaintext + arraysize(kAesCbcPlaintext)); const std::vector expected_ciphertext( kAesCbcCiphertext, kAesCbcCiphertext + arraysize(kAesCbcCiphertext)); TestEncryptDecrypt(plaintext, expected_ciphertext); } TEST_F(AesCbcTest, Aes128CbcPkcs5) { const std::string kKey = "128=SixteenBytes"; const std::string kIv = "Sweet Sixteen IV"; const std::string kPlaintext = "Plain text with a g-clef U+1D11E \360\235\204\236"; const std::string kExpectedCiphertextHex = "D4A67A0BA33C30F207344D81D1E944BBE65587C3D7D9939A" "C070C62B9C15A3EA312EA4AD1BC7929F4D3C16B03AD5ADA8"; key_.assign(kKey.begin(), kKey.end()); iv_.assign(kIv.begin(), kIv.end()); const std::vector plaintext(kPlaintext.begin(), kPlaintext.end()); std::vector expected_ciphertext; ASSERT_TRUE( base::HexStringToBytes(kExpectedCiphertextHex, &expected_ciphertext)); TestEncryptDecrypt(plaintext, expected_ciphertext); } TEST_F(AesCbcTest, Aes192CbcPkcs5) { const std::string kKey = "192bitsIsTwentyFourByte!"; const std::string kIv = "Sweet Sixteen IV"; const std::string kPlaintext = "Small text"; const std::string kExpectedCiphertextHex = "78DE5D7C2714FC5C61346C5416F6C89A"; key_.assign(kKey.begin(), kKey.end()); iv_.assign(kIv.begin(), kIv.end()); const std::vector plaintext(kPlaintext.begin(), kPlaintext.end()); std::vector expected_ciphertext; ASSERT_TRUE( base::HexStringToBytes(kExpectedCiphertextHex, &expected_ciphertext)); TestEncryptDecrypt(plaintext, expected_ciphertext); } TEST_F(AesCbcTest, NoPaddingNoChainAcrossCalls) { const uint8_t kPlaintext[] = { 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a, }; const uint8_t kCiphertext[] = { 0x77, 0xcd, 0xe9, 0x1f, 0xe6, 0xdf, 0x9c, 0xbc, 0x5d, 0x0c, 0x98, 0xf9, 0x6e, 0xfd, 0x59, 0x0b, }; std::vector plaintext(kPlaintext, kPlaintext + arraysize(kPlaintext)); std::vector ciphertext(kCiphertext, kCiphertext + arraysize(kCiphertext)); AesCbcEncryptor encryptor(kNoPadding, !kChainAcrossCalls); ASSERT_TRUE(encryptor.InitializeWithIv(key_, iv_)); std::vector encrypted; ASSERT_TRUE(encryptor.Crypt(plaintext, &encrypted)); EXPECT_EQ(ciphertext, encrypted); // Iv should not have been updated. EXPECT_EQ(iv_, encryptor.iv()); ASSERT_TRUE(encryptor.Crypt(plaintext, &encrypted)); EXPECT_EQ(ciphertext, encrypted); AesCbcDecryptor decryptor(kNoPadding, !kChainAcrossCalls); ASSERT_TRUE(decryptor.InitializeWithIv(key_, iv_)); std::vector decrypted; ASSERT_TRUE(decryptor.Crypt(ciphertext, &decrypted)); EXPECT_EQ(plaintext, decrypted); // Iv should not have been updated. EXPECT_EQ(iv_, encryptor.iv()); ASSERT_TRUE(decryptor.Crypt(ciphertext, &decrypted)); EXPECT_EQ(plaintext, decrypted); } TEST_F(AesCbcTest, NoPaddingChainAcrossCalls) { const uint8_t kPlaintext[] = { 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a, }; const uint8_t kCiphertext[] = { 0x77, 0xcd, 0xe9, 0x1f, 0xe6, 0xdf, 0x9c, 0xbc, 0x5d, 0x0c, 0x98, 0xf9, 0x6e, 0xfd, 0x59, 0x0b, }; const uint8_t kCiphertext2[] = { 0xbd, 0xdd, 0xe4, 0x39, 0x52, 0x6f, 0x10, 0x0c, 0x95, 0x45, 0xc2, 0x74, 0xd4, 0xf7, 0xfd, 0x3f, }; std::vector plaintext(kPlaintext, kPlaintext + arraysize(kPlaintext)); std::vector ciphertext(kCiphertext, kCiphertext + arraysize(kCiphertext)); std::vector ciphertext2(kCiphertext2, kCiphertext2 + arraysize(kCiphertext2)); AesCbcEncryptor encryptor(kNoPadding, kChainAcrossCalls); ASSERT_TRUE(encryptor.InitializeWithIv(key_, iv_)); std::vector encrypted; ASSERT_TRUE(encryptor.Crypt(plaintext, &encrypted)); EXPECT_EQ(ciphertext, encrypted); // Iv should have been updated. EXPECT_NE(iv_, encryptor.iv()); // If run encrypt again, the result will be different. ASSERT_TRUE(encryptor.Crypt(plaintext, &encrypted)); EXPECT_EQ(ciphertext2, encrypted); AesCbcDecryptor decryptor(kNoPadding, kChainAcrossCalls); ASSERT_TRUE(decryptor.InitializeWithIv(key_, iv_)); std::vector decrypted; ASSERT_TRUE(decryptor.Crypt(ciphertext, &decrypted)); EXPECT_EQ(plaintext, decrypted); // Iv should have been updated. EXPECT_NE(iv_, encryptor.iv()); // If run decrypt on ciphertext2 now, it will return the original plaintext. ASSERT_TRUE(decryptor.Crypt(ciphertext2, &decrypted)); EXPECT_EQ(plaintext, decrypted); } TEST_F(AesCbcTest, UnsupportedKeySize) { EXPECT_FALSE(encryptor_->InitializeWithIv(std::vector(15, 0), iv_)); EXPECT_FALSE(decryptor_->InitializeWithIv(std::vector(15, 0), iv_)); } TEST_F(AesCbcTest, UnsupportedIvSize) { EXPECT_FALSE(encryptor_->InitializeWithIv(key_, std::vector(14, 0))); EXPECT_FALSE(decryptor_->InitializeWithIv(key_, std::vector(8, 0))); } TEST_F(AesCbcTest, Pkcs5CipherTextNotMultipleOfBlockSize) { std::string plaintext; ASSERT_TRUE(decryptor_->InitializeWithIv(key_, iv_)); EXPECT_FALSE(decryptor_->Crypt("1", &plaintext)); } TEST_F(AesCbcTest, Pkcs5CipherTextEmpty) { std::string plaintext; ASSERT_TRUE(decryptor_->InitializeWithIv(key_, iv_)); EXPECT_FALSE(decryptor_->Crypt("", &plaintext)); } struct CbcTestCase { CbcPaddingScheme padding_scheme; const char* plaintext_hex; const char* expected_ciphertext_hex; }; const CbcTestCase kCbcTestCases[] = { // No padding with zero bytes. {kNoPadding, "", ""}, {kNoPadding, "6bc1bee22e409f96e93d7e117393172a6bc1bee22e409f96e93d7e117393172a", "77cde91fe6df9cbc5d0c98f96efd590bbddde439526f100c9545c274d4f7fd3f"}, // Pkcs5 padding with zero bytes. {kPkcs5Padding, "", "f6a3569dea3cda208eb3d5792942612b"}, // Cts Padding with zero bytes. {kCtsPadding, "", ""}, // Cts Padding with no encrypted blocks. {kCtsPadding, "3f593e7a204a5e70f2", "3f593e7a204a5e70f2"}, // Cts padding with residual bytes. {kCtsPadding, "e0818f2dc7caaa9edf09285a0c1fca98d39e9b08a47ab6911c4bbdf27d94" "f917cdffc9ebb307141f23b0d3921e0ed7f86eb09381286f8e7a4f", "b40a0b8704c74e22e8030cad6f272b34ace54cc7c9c64b2018bbcf23df018" "39b14899441cf74a9fb2f2b229a609146f31be8e8a826eb6e857e"}, // Cts padding with even blocks. {kCtsPadding, "3f593e7a204a5e70f2814dca05aa49d36f2daddc9a24e0515802c539efc3" "1094b3ad6c26d6f5c0e387545ce6a4c2c14d", "5f32cd0504b27b25ee04090d88d37d340c9c0a9fa50b05358b98fad4302ea" "480148d8aa091f4e7d186a7223df153f6f7"}, // Cts padding with one block and a half. {kCtsPadding, "3f593e7a204a5e70f2814dca05aa49d36f2daddc9a4302ea", "623fc113fe02ce85628deb58d652c6995f32cd0504b27b25"}, }; class AesCbcCryptorVerificationTest : public AesCbcTest, public ::testing::WithParamInterface {}; TEST_P(AesCbcCryptorVerificationTest, EncryptDecryptTest) { encryptor_.reset( new AesCbcEncryptor(GetParam().padding_scheme, !kChainAcrossCalls)); decryptor_.reset( new AesCbcDecryptor(GetParam().padding_scheme, !kChainAcrossCalls)); std::vector plaintext; std::string plaintext_hex(GetParam().plaintext_hex); if (!plaintext_hex.empty()) ASSERT_TRUE(base::HexStringToBytes(plaintext_hex, &plaintext)); std::vector expected_ciphertext; std::string expected_ciphertext_hex(GetParam().expected_ciphertext_hex); if (!expected_ciphertext_hex.empty()) { ASSERT_TRUE(base::HexStringToBytes(GetParam().expected_ciphertext_hex, &expected_ciphertext)); } TestEncryptDecrypt(plaintext, expected_ciphertext); } INSTANTIATE_TEST_CASE_P(CbcTestCases, AesCbcCryptorVerificationTest, ::testing::ValuesIn(kCbcTestCases)); } // namespace media } // namespace edash_packager