// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "packager/media/formats/webm/cluster_builder.h" #include #include "packager/media/formats/webm/webm_constants.h" namespace shaka { namespace media { static const uint8_t kClusterHeader[] = { 0x1F, 0x43, 0xB6, 0x75, // CLUSTER ID 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // cluster(size = 0) 0xE7, // Timecode ID 0x88, // timecode(size=8) 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // timecode value }; static const uint8_t kSimpleBlockHeader[] = { 0xA3, // SimpleBlock ID 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // SimpleBlock(size = 0) }; static const uint8_t kBlockGroupHeader[] = { 0xA0, // BlockGroup ID 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // BlockGroup(size = 0) 0x9B, // BlockDuration ID 0x88, // BlockDuration(size = 8) 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // duration 0xA1, // Block ID 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // Block(size = 0) }; static const uint8_t kBlockGroupHeaderWithoutBlockDuration[] = { 0xA0, // BlockGroup ID 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // BlockGroup(size = 0) 0xA1, // Block ID 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // Block(size = 0) }; static const uint8_t kBlockGroupReferenceBlock[] = { 0xFB, // ReferenceBlock ID 0x81, 0x00, // ReferenceBlock (size=1, value=0) }; enum { kClusterSizeOffset = 4, kClusterTimecodeOffset = 14, kSimpleBlockSizeOffset = 1, kBlockGroupSizeOffset = 1, kBlockGroupWithoutBlockDurationBlockSizeOffset = 10, kBlockGroupDurationOffset = 11, kBlockGroupBlockSizeOffset = 20, kInitialBufferSize = 32768, }; Cluster::Cluster(std::unique_ptr data, int size) : data_(std::move(data)), size_(size) {} Cluster::~Cluster() {} ClusterBuilder::ClusterBuilder() { Reset(); } ClusterBuilder::~ClusterBuilder() {} void ClusterBuilder::SetClusterTimecode(int64_t cluster_timecode) { DCHECK_EQ(cluster_timecode_, -1); cluster_timecode_ = cluster_timecode; // Write the timecode into the header. uint8_t* buf = buffer_.get() + kClusterTimecodeOffset; for (int i = 7; i >= 0; --i) { buf[i] = cluster_timecode & 0xff; cluster_timecode >>= 8; } } void ClusterBuilder::AddSimpleBlock(int track_num, int64_t timecode, int flags, const uint8_t* data, int size) { int block_size = size + 4; int bytes_needed = sizeof(kSimpleBlockHeader) + block_size; if (bytes_needed > (buffer_size_ - bytes_used_)) ExtendBuffer(bytes_needed); uint8_t* buf = buffer_.get() + bytes_used_; int block_offset = bytes_used_; memcpy(buf, kSimpleBlockHeader, sizeof(kSimpleBlockHeader)); UpdateUInt64(block_offset + kSimpleBlockSizeOffset, block_size); buf += sizeof(kSimpleBlockHeader); WriteBlock(buf, track_num, timecode, flags, data, size); bytes_used_ += bytes_needed; } void ClusterBuilder::AddBlockGroup(int track_num, int64_t timecode, int duration, int flags, bool is_key_frame, const uint8_t* data, int size) { AddBlockGroupInternal(track_num, timecode, true, duration, flags, is_key_frame, data, size); } void ClusterBuilder::AddBlockGroupWithoutBlockDuration(int track_num, int64_t timecode, int flags, bool is_key_frame, const uint8_t* data, int size) { AddBlockGroupInternal(track_num, timecode, false, 0, flags, is_key_frame, data, size); } void ClusterBuilder::AddBlockGroupInternal(int track_num, int64_t timecode, bool include_block_duration, int duration, int flags, bool is_key_frame, const uint8_t* data, int size) { int block_size = size + 4; int bytes_needed = block_size; if (include_block_duration) { bytes_needed += sizeof(kBlockGroupHeader); } else { bytes_needed += sizeof(kBlockGroupHeaderWithoutBlockDuration); } if (!is_key_frame) { bytes_needed += sizeof(kBlockGroupReferenceBlock); } int block_group_size = bytes_needed - 9; if (bytes_needed > (buffer_size_ - bytes_used_)) ExtendBuffer(bytes_needed); uint8_t* buf = buffer_.get() + bytes_used_; int block_group_offset = bytes_used_; if (include_block_duration) { memcpy(buf, kBlockGroupHeader, sizeof(kBlockGroupHeader)); UpdateUInt64(block_group_offset + kBlockGroupDurationOffset, duration); UpdateUInt64(block_group_offset + kBlockGroupBlockSizeOffset, block_size); buf += sizeof(kBlockGroupHeader); } else { memcpy(buf, kBlockGroupHeaderWithoutBlockDuration, sizeof(kBlockGroupHeaderWithoutBlockDuration)); UpdateUInt64( block_group_offset + kBlockGroupWithoutBlockDurationBlockSizeOffset, block_size); buf += sizeof(kBlockGroupHeaderWithoutBlockDuration); } UpdateUInt64(block_group_offset + kBlockGroupSizeOffset, block_group_size); // Make sure the 4 most-significant bits are 0. // http://www.matroska.org/technical/specs/index.html#block_structure flags &= 0x0f; WriteBlock(buf, track_num, timecode, flags, data, size); buf += size + 4; if (!is_key_frame) memcpy(buf, kBlockGroupReferenceBlock, sizeof(kBlockGroupReferenceBlock)); bytes_used_ += bytes_needed; } void ClusterBuilder::WriteBlock(uint8_t* buf, int track_num, int64_t timecode, int flags, const uint8_t* data, int size) { DCHECK_GE(track_num, 0); DCHECK_LE(track_num, 126); DCHECK_GE(flags, 0); DCHECK_LE(flags, 0xff); DCHECK(data); DCHECK_GT(size, 0); DCHECK_NE(cluster_timecode_, -1); int64_t timecode_delta = timecode - cluster_timecode_; DCHECK_GE(timecode_delta, -32768); DCHECK_LE(timecode_delta, 32767); buf[0] = 0x80 | (track_num & 0x7F); buf[1] = (timecode_delta >> 8) & 0xff; buf[2] = timecode_delta & 0xff; buf[3] = flags & 0xff; memcpy(buf + 4, data, size); } std::unique_ptr ClusterBuilder::Finish() { DCHECK_NE(cluster_timecode_, -1); UpdateUInt64(kClusterSizeOffset, bytes_used_ - (kClusterSizeOffset + 8)); std::unique_ptr ret(new Cluster(std::move(buffer_), bytes_used_)); Reset(); return ret; } std::unique_ptr ClusterBuilder::FinishWithUnknownSize() { DCHECK_NE(cluster_timecode_, -1); UpdateUInt64(kClusterSizeOffset, kWebMUnknownSize); std::unique_ptr ret(new Cluster(std::move(buffer_), bytes_used_)); Reset(); return ret; } void ClusterBuilder::Reset() { buffer_size_ = kInitialBufferSize; buffer_.reset(new uint8_t[buffer_size_]); memcpy(buffer_.get(), kClusterHeader, sizeof(kClusterHeader)); bytes_used_ = sizeof(kClusterHeader); cluster_timecode_ = -1; } void ClusterBuilder::ExtendBuffer(int bytes_needed) { int new_buffer_size = 2 * buffer_size_; while ((new_buffer_size - bytes_used_) < bytes_needed) new_buffer_size *= 2; std::unique_ptr new_buffer(new uint8_t[new_buffer_size]); memcpy(new_buffer.get(), buffer_.get(), bytes_used_); buffer_.reset(new_buffer.release()); buffer_size_ = new_buffer_size; } void ClusterBuilder::UpdateUInt64(int offset, int64_t value) { DCHECK_LE(offset + 7, buffer_size_); uint8_t* buf = buffer_.get() + offset; // Fill the last 7 bytes of size field in big-endian order. for (int i = 7; i > 0; i--) { buf[i] = value & 0xff; value >>= 8; } } } // namespace media } // namespace shaka