// Copyright 2014 Google Inc. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file or at // https://developers.google.com/open-source/licenses/bsd #include #include "base/logging.h" #include "base/memory/scoped_ptr.h" #include "base/strings/string_number_conversions.h" #include "media/base/aes_encryptor.h" namespace { const uint32 kAesBlockSize = 16; // From NIST SP 800-38a test case: - F.5.1 CTR-AES128.Encrypt // http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf const uint8 kAesCtrKey[] = {0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c}; const uint8 kAesCtrIv[] = {0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff}; const uint8 kAesCtrPlaintext[] = { // Block #1 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a, // Block #2 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51, // Block #3 0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef, // Block #4 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10}; const uint8 kAesCtrCiphertext[] = { // Block #1 0x87, 0x4d, 0x61, 0x91, 0xb6, 0x20, 0xe3, 0x26, 0x1b, 0xef, 0x68, 0x64, 0x99, 0x0d, 0xb6, 0xce, // Block #2 0x98, 0x06, 0xf6, 0x6b, 0x79, 0x70, 0xfd, 0xff, 0x86, 0x17, 0x18, 0x7b, 0xb9, 0xff, 0xfd, 0xff, // Block #3 0x5a, 0xe4, 0xdf, 0x3e, 0xdb, 0xd5, 0xd3, 0x5e, 0x5b, 0x4f, 0x09, 0x02, 0x0d, 0xb0, 0x3e, 0xab, // Block #4 0x1e, 0x03, 0x1d, 0xda, 0x2f, 0xbe, 0x03, 0xd1, 0x79, 0x21, 0x70, 0xa0, 0xf3, 0x00, 0x9c, 0xee}; // Subsample test cases. struct SubsampleTestCase { const uint8* subsample_sizes; uint32 subsample_count; }; const uint8 kSubsampleTest1[] = {64}; const uint8 kSubsampleTest2[] = {13, 51}; const uint8 kSubsampleTest3[] = {52, 12}; const uint8 kSubsampleTest4[] = {16, 48}; const uint8 kSubsampleTest5[] = {3, 16, 45}; const uint8 kSubsampleTest6[] = {18, 12, 34}; const uint8 kSubsampleTest7[] = {8, 16, 2, 38}; const uint8 kSubsampleTest8[] = {10, 1, 33, 20}; const uint8 kSubsampleTest9[] = {7, 19, 6, 32}; const uint8 kSubsampleTest10[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9}; const SubsampleTestCase kSubsampleTestCases[] = { {kSubsampleTest1, arraysize(kSubsampleTest1)}, {kSubsampleTest2, arraysize(kSubsampleTest2)}, {kSubsampleTest3, arraysize(kSubsampleTest3)}, {kSubsampleTest4, arraysize(kSubsampleTest4)}, {kSubsampleTest5, arraysize(kSubsampleTest5)}, {kSubsampleTest6, arraysize(kSubsampleTest6)}, {kSubsampleTest7, arraysize(kSubsampleTest7)}, {kSubsampleTest8, arraysize(kSubsampleTest8)}, {kSubsampleTest9, arraysize(kSubsampleTest9)}, {kSubsampleTest10, arraysize(kSubsampleTest10)}}; // IV test values. const uint32 kTextSizeInBytes = 60; // 3 full blocks + 1 partial block. const uint8 kIv128Zero[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; const uint8 kIv128Two[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2}; const uint8 kIv128Four[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4}; const uint8 kIv128Max64[] = {0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; const uint8 kIv128OneAndThree[] = {0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3}; const uint8 kIv128MaxMinusOne[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe}; const uint8 kIv64Zero[] = {0, 0, 0, 0, 0, 0, 0, 0}; const uint8 kIv64One[] = {0, 0, 0, 0, 0, 0, 0, 1}; const uint8 kIv64MaxMinusOne[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe}; const uint8 kIv64Max[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; struct IvTestCase { const uint8* iv_test; uint32 iv_size; const uint8* iv_expected; }; // As recommended in ISO/IEC FDIS 23001-7: CENC spec, // For 64-bit (8-byte) IV_Sizes, initialization vectors for subsequent samples // can be created by incrementing the initialization vector of the previous // sample. For 128-bit (16-byte) IV_Sizes, initialization vectors for subsequent // samples should be created by adding the block count of the previous sample to // the initialization vector of the previous sample. const IvTestCase kIvTestCases[] = { {kIv128Zero, arraysize(kIv128Zero), kIv128Four}, {kIv128Max64, arraysize(kIv128Max64), kIv128OneAndThree}, {kIv128MaxMinusOne, arraysize(kIv128MaxMinusOne), kIv128Two}, {kIv64Zero, arraysize(kIv64Zero), kIv64One}, {kIv64MaxMinusOne, arraysize(kIv64MaxMinusOne), kIv64Max}, {kIv64Max, arraysize(kIv64Max), kIv64Zero}}; // We support AES 128, i.e. 16 bytes key only. const uint8 kInvalidKey[] = {0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09}; // We support Iv of size 8 or 16 only as defined in CENC spec. const uint8 kInvalidIv[] = {0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe}; } // namespace namespace edash_packager { namespace media { class AesCtrEncryptorTest : public testing::Test { public: virtual void SetUp() { key_.assign(kAesCtrKey, kAesCtrKey + arraysize(kAesCtrKey)); iv_.assign(kAesCtrIv, kAesCtrIv + arraysize(kAesCtrIv)); plaintext_.assign(kAesCtrPlaintext, kAesCtrPlaintext + arraysize(kAesCtrPlaintext)); ciphertext_.assign(kAesCtrCiphertext, kAesCtrCiphertext + arraysize(kAesCtrCiphertext)); ASSERT_TRUE(encryptor_.InitializeWithIv(key_, iv_)); } protected: std::vector key_; std::vector iv_; std::vector plaintext_; std::vector ciphertext_; AesCtrEncryptor encryptor_; }; TEST_F(AesCtrEncryptorTest, NistTestCase) { std::vector encrypted; EXPECT_TRUE(encryptor_.Encrypt(plaintext_, &encrypted)); EXPECT_EQ(ciphertext_, encrypted); EXPECT_TRUE(encryptor_.SetIv(iv_)); std::vector decrypted; EXPECT_TRUE(encryptor_.Decrypt(encrypted, &decrypted)); EXPECT_EQ(plaintext_, decrypted); } TEST_F(AesCtrEncryptorTest, NistTestCaseInplaceEncryptionDecryption) { std::vector buffer = plaintext_; EXPECT_TRUE(encryptor_.Encrypt(&buffer[0], buffer.size(), &buffer[0])); EXPECT_EQ(ciphertext_, buffer); EXPECT_TRUE(encryptor_.SetIv(iv_)); EXPECT_TRUE(encryptor_.Decrypt(&buffer[0], buffer.size(), &buffer[0])); EXPECT_EQ(plaintext_, buffer); } TEST_F(AesCtrEncryptorTest, EncryptDecryptString) { static const char kPlaintext[] = "normal plaintext of random length"; static const char kExpectedCiphertextInHex[] = "82E3AD1EF90C5CC09EB37F1B9EFBD99016441A1C15123F0777CD57BB993E14DA02"; std::string ciphertext; EXPECT_TRUE(encryptor_.Encrypt(kPlaintext, &ciphertext)); EXPECT_EQ(kExpectedCiphertextInHex, base::HexEncode(ciphertext.data(), ciphertext.size())); std::string decrypted; EXPECT_TRUE(encryptor_.SetIv(iv_)); EXPECT_TRUE(encryptor_.Decrypt(ciphertext, &decrypted)); EXPECT_EQ(kPlaintext, decrypted); } TEST_F(AesCtrEncryptorTest, 128BitIVBoundaryCaseEncryption) { // There are four blocks of text in |plaintext_|. The first block should be // encrypted with IV = kIv128Max64, the subsequent blocks should be encrypted // with iv 0 to 3. std::vector iv_max64(kIv128Max64, kIv128Max64 + arraysize(kIv128Max64)); ASSERT_TRUE(encryptor_.InitializeWithIv(key_, iv_max64)); std::vector encrypted; EXPECT_TRUE(encryptor_.Encrypt(plaintext_, &encrypted)); std::vector iv_one_and_three( kIv128OneAndThree, kIv128OneAndThree + arraysize(kIv128OneAndThree)); encryptor_.UpdateIv(); EXPECT_EQ(iv_one_and_three, encryptor_.iv()); ASSERT_TRUE(encryptor_.InitializeWithIv(key_, iv_max64)); std::vector encrypted_verify(plaintext_.size(), 0); EXPECT_TRUE( encryptor_.Encrypt(&plaintext_[0], kAesBlockSize, &encrypted_verify[0])); std::vector iv_zero(kIv128Zero, kIv128Zero + arraysize(kIv128Zero)); ASSERT_TRUE(encryptor_.InitializeWithIv(key_, iv_zero)); EXPECT_TRUE(encryptor_.Encrypt(&plaintext_[kAesBlockSize], kAesBlockSize * 3, &encrypted_verify[kAesBlockSize])); EXPECT_EQ(encrypted, encrypted_verify); } TEST_F(AesCtrEncryptorTest, InitWithRandomIv) { const uint8 kIvSize = 8; ASSERT_TRUE(encryptor_.InitializeWithRandomIv(key_, kIvSize)); ASSERT_EQ(kIvSize, encryptor_.iv().size()); LOG(INFO) << "Random IV: " << base::HexEncode(&encryptor_.iv()[0], encryptor_.iv().size()); } TEST_F(AesCtrEncryptorTest, UnsupportedKeySize) { std::vector key(kInvalidKey, kInvalidKey + arraysize(kInvalidKey)); ASSERT_FALSE(encryptor_.InitializeWithIv(key, iv_)); } TEST_F(AesCtrEncryptorTest, UnsupportedIV) { std::vector iv(kInvalidIv, kInvalidIv + arraysize(kInvalidIv)); ASSERT_FALSE(encryptor_.InitializeWithIv(key_, iv)); } TEST_F(AesCtrEncryptorTest, IncorrectIvSize) { ASSERT_FALSE(encryptor_.InitializeWithRandomIv(key_, 15)); } class AesCtrEncryptorSubsampleTest : public AesCtrEncryptorTest, public ::testing::WithParamInterface {}; TEST_P(AesCtrEncryptorSubsampleTest, NistTestCaseSubsamples) { const SubsampleTestCase* test_case = &GetParam(); std::vector encrypted(plaintext_.size(), 0); for (uint32 i = 0, offset = 0; i < test_case->subsample_count; ++i) { uint32 len = test_case->subsample_sizes[i]; EXPECT_TRUE( encryptor_.Encrypt(&plaintext_[offset], len, &encrypted[offset])); offset += len; EXPECT_EQ(offset % kAesBlockSize, encryptor_.block_offset()); } EXPECT_EQ(ciphertext_, encrypted); EXPECT_TRUE(encryptor_.SetIv(iv_)); std::vector decrypted(encrypted.size(), 0); for (uint32 i = 0, offset = 0; i < test_case->subsample_count; ++i) { uint32 len = test_case->subsample_sizes[i]; EXPECT_TRUE( encryptor_.Decrypt(&encrypted[offset], len, &decrypted[offset])); offset += len; EXPECT_EQ(offset % kAesBlockSize, encryptor_.block_offset()); } EXPECT_EQ(plaintext_, decrypted); } INSTANTIATE_TEST_CASE_P(SubsampleTestCases, AesCtrEncryptorSubsampleTest, ::testing::ValuesIn(kSubsampleTestCases)); class AesCtrEncryptorIvTest : public ::testing::TestWithParam {}; TEST_P(AesCtrEncryptorIvTest, IvTest) { // Some dummy key and plaintext. std::vector key(16, 1); std::vector plaintext(kTextSizeInBytes, 3); std::vector iv_test(GetParam().iv_test, GetParam().iv_test + GetParam().iv_size); std::vector iv_expected(GetParam().iv_expected, GetParam().iv_expected + GetParam().iv_size); AesCtrEncryptor encryptor; ASSERT_TRUE(encryptor.InitializeWithIv(key, iv_test)); std::vector encrypted; EXPECT_TRUE(encryptor.Encrypt(plaintext, &encrypted)); encryptor.UpdateIv(); EXPECT_EQ(iv_expected, encryptor.iv()); } INSTANTIATE_TEST_CASE_P(IvTestCases, AesCtrEncryptorIvTest, ::testing::ValuesIn(kIvTestCases)); class AesCbcEncryptorTestEncryptionDecryption : public testing::Test { public: void TestEncryptionDecryption(const std::vector& key, const std::vector& iv, const std::string& plaintext, const std::string& expected_ciphertext_hex) { AesCbcEncryptor encryptor; EXPECT_TRUE(encryptor.InitializeWithIv(key, iv)); std::string ciphertext; encryptor.Encrypt(plaintext, &ciphertext); EXPECT_EQ(expected_ciphertext_hex, base::HexEncode(ciphertext.data(), ciphertext.size())); AesCbcDecryptor decryptor; ASSERT_TRUE(decryptor.InitializeWithIv(key, iv)); std::string decrypted; EXPECT_TRUE(decryptor.Decrypt(ciphertext, &decrypted)); EXPECT_EQ(plaintext, decrypted); } }; TEST_F(AesCbcEncryptorTestEncryptionDecryption, EncryptAES256CBC) { // NIST SP 800-38A test vector F.2.5 CBC-AES256.Encrypt. static const uint8 kAesCbcKey[] = { 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81, 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4}; static const uint8 kAesCbcIv[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f}; static const uint8 kAesCbcPlaintext[] = { // Block #1 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a, // Block #2 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51, // Block #3 0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef, // Block #4 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10}; static const uint8 kAesCbcCiphertext[] = { // Block #1 0xf5, 0x8c, 0x4c, 0x04, 0xd6, 0xe5, 0xf1, 0xba, 0x77, 0x9e, 0xab, 0xfb, 0x5f, 0x7b, 0xfb, 0xd6, // Block #2 0x9c, 0xfc, 0x4e, 0x96, 0x7e, 0xdb, 0x80, 0x8d, 0x67, 0x9f, 0x77, 0x7b, 0xc6, 0x70, 0x2c, 0x7d, // Block #3 0x39, 0xf2, 0x33, 0x69, 0xa9, 0xd9, 0xba, 0xcf, 0xa5, 0x30, 0xe2, 0x63, 0x04, 0x23, 0x14, 0x61, // Block #4 0xb2, 0xeb, 0x05, 0xe2, 0xc3, 0x9b, 0xe9, 0xfc, 0xda, 0x6c, 0x19, 0x07, 0x8c, 0x6a, 0x9d, 0x1b, // PKCS #5 padding, encrypted. 0x3f, 0x46, 0x17, 0x96, 0xd6, 0xb0, 0xd6, 0xb2, 0xe0, 0xc2, 0xa7, 0x2b, 0x4d, 0x80, 0xe6, 0x44}; const std::vector key(kAesCbcKey, kAesCbcKey + arraysize(kAesCbcKey)); const std::vector iv(kAesCbcIv, kAesCbcIv + arraysize(kAesCbcIv)); const std::string plaintext(reinterpret_cast(kAesCbcPlaintext), sizeof(kAesCbcPlaintext)); const std::string expected_ciphertext_hex = base::HexEncode(kAesCbcCiphertext, sizeof(kAesCbcCiphertext)); TestEncryptionDecryption(key, iv, plaintext, expected_ciphertext_hex); } TEST_F(AesCbcEncryptorTestEncryptionDecryption, EncryptAES128CBCRegression) { const std::string kKey = "128=SixteenBytes"; const std::string kIv = "Sweet Sixteen IV"; const std::string kPlaintext = "Plain text with a g-clef U+1D11E \360\235\204\236"; const std::string kExpectedCiphertextHex = "D4A67A0BA33C30F207344D81D1E944BBE65587C3D7D9939A" "C070C62B9C15A3EA312EA4AD1BC7929F4D3C16B03AD5ADA8"; const std::vector key(kKey.begin(), kKey.end()); const std::vector iv(kIv.begin(), kIv.end()); TestEncryptionDecryption(key, iv, kPlaintext, kExpectedCiphertextHex); } TEST_F(AesCbcEncryptorTestEncryptionDecryption, EncryptAES192CBCRegression) { const std::string kKey = "192bitsIsTwentyFourByte!"; const std::string kIv = "Sweet Sixteen IV"; const std::string kPlaintext = "Small text"; const std::string kExpectedCiphertextHex = "78DE5D7C2714FC5C61346C5416F6C89A"; const std::vector key(kKey.begin(), kKey.end()); const std::vector iv(kIv.begin(), kIv.end()); TestEncryptionDecryption(key, iv, kPlaintext, kExpectedCiphertextHex); } class AesCbcEncryptorTest : public testing::Test { public: virtual void SetUp() { const std::string kKey = "128=SixteenBytes"; const std::string kIv = "Sweet Sixteen IV"; key_.assign(kKey.begin(), kKey.end()); iv_.assign(kIv.begin(), kIv.end()); } protected: std::vector key_; std::vector iv_; }; TEST_F(AesCbcEncryptorTest, UnsupportedKeySize) { AesCbcEncryptor encryptor; EXPECT_FALSE(encryptor.InitializeWithIv(std::vector(15, 0), iv_)); } TEST_F(AesCbcEncryptorTest, UnsupportedIvSize) { AesCbcEncryptor encryptor; EXPECT_FALSE(encryptor.InitializeWithIv(key_, std::vector(14, 0))); } TEST_F(AesCbcEncryptorTest, EmptyEncrypt) { AesCbcEncryptor encryptor; ASSERT_TRUE(encryptor.InitializeWithIv(key_, iv_)); std::string ciphertext; std::string expected_ciphertext_hex = "8518B8878D34E7185E300D0FCC426396"; encryptor.Encrypt("", &ciphertext); EXPECT_EQ(expected_ciphertext_hex, base::HexEncode(ciphertext.data(), ciphertext.size())); } TEST_F(AesCbcEncryptorTest, CipherTextNotMultipleOfBlockSize) { AesCbcDecryptor decryptor; ASSERT_TRUE(decryptor.InitializeWithIv(key_, iv_)); std::string plaintext; EXPECT_FALSE(decryptor.Decrypt("1", &plaintext)); } } // namespace media } // namespace edash_packager