// Copyright (c) 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/process/kill.h" #include #include #include #include #include "base/file_util.h" #include "base/logging.h" #include "base/posix/eintr_wrapper.h" #include "base/process/process_iterator.h" #include "base/synchronization/waitable_event.h" #include "base/third_party/dynamic_annotations/dynamic_annotations.h" #include "base/threading/platform_thread.h" namespace base { namespace { int WaitpidWithTimeout(ProcessHandle handle, int64 wait_milliseconds, bool* success) { // This POSIX version of this function only guarantees that we wait no less // than |wait_milliseconds| for the process to exit. The child process may // exit sometime before the timeout has ended but we may still block for up // to 256 milliseconds after the fact. // // waitpid() has no direct support on POSIX for specifying a timeout, you can // either ask it to block indefinitely or return immediately (WNOHANG). // When a child process terminates a SIGCHLD signal is sent to the parent. // Catching this signal would involve installing a signal handler which may // affect other parts of the application and would be difficult to debug. // // Our strategy is to call waitpid() once up front to check if the process // has already exited, otherwise to loop for wait_milliseconds, sleeping for // at most 256 milliseconds each time using usleep() and then calling // waitpid(). The amount of time we sleep starts out at 1 milliseconds, and // we double it every 4 sleep cycles. // // usleep() is speced to exit if a signal is received for which a handler // has been installed. This means that when a SIGCHLD is sent, it will exit // depending on behavior external to this function. // // This function is used primarily for unit tests, if we want to use it in // the application itself it would probably be best to examine other routes. int status = -1; pid_t ret_pid = HANDLE_EINTR(waitpid(handle, &status, WNOHANG)); static const int64 kMaxSleepInMicroseconds = 1 << 18; // ~256 milliseconds. int64 max_sleep_time_usecs = 1 << 10; // ~1 milliseconds. int64 double_sleep_time = 0; // If the process hasn't exited yet, then sleep and try again. TimeTicks wakeup_time = TimeTicks::Now() + TimeDelta::FromMilliseconds(wait_milliseconds); while (ret_pid == 0) { TimeTicks now = TimeTicks::Now(); if (now > wakeup_time) break; // Guaranteed to be non-negative! int64 sleep_time_usecs = (wakeup_time - now).InMicroseconds(); // Sleep for a bit while we wait for the process to finish. if (sleep_time_usecs > max_sleep_time_usecs) sleep_time_usecs = max_sleep_time_usecs; // usleep() will return 0 and set errno to EINTR on receipt of a signal // such as SIGCHLD. usleep(sleep_time_usecs); ret_pid = HANDLE_EINTR(waitpid(handle, &status, WNOHANG)); if ((max_sleep_time_usecs < kMaxSleepInMicroseconds) && (double_sleep_time++ % 4 == 0)) { max_sleep_time_usecs *= 2; } } if (success) *success = (ret_pid != -1); return status; } TerminationStatus GetTerminationStatusImpl(ProcessHandle handle, bool can_block, int* exit_code) { int status = 0; const pid_t result = HANDLE_EINTR(waitpid(handle, &status, can_block ? 0 : WNOHANG)); if (result == -1) { DPLOG(ERROR) << "waitpid(" << handle << ")"; if (exit_code) *exit_code = 0; return TERMINATION_STATUS_NORMAL_TERMINATION; } else if (result == 0) { // the child hasn't exited yet. if (exit_code) *exit_code = 0; return TERMINATION_STATUS_STILL_RUNNING; } if (exit_code) *exit_code = status; if (WIFSIGNALED(status)) { switch (WTERMSIG(status)) { case SIGABRT: case SIGBUS: case SIGFPE: case SIGILL: case SIGSEGV: return TERMINATION_STATUS_PROCESS_CRASHED; case SIGINT: case SIGKILL: case SIGTERM: return TERMINATION_STATUS_PROCESS_WAS_KILLED; default: break; } } if (WIFEXITED(status) && WEXITSTATUS(status) != 0) return TERMINATION_STATUS_ABNORMAL_TERMINATION; return TERMINATION_STATUS_NORMAL_TERMINATION; } } // namespace // Attempts to kill the process identified by the given process // entry structure. Ignores specified exit_code; posix can't force that. // Returns true if this is successful, false otherwise. bool KillProcess(ProcessHandle process_id, int exit_code, bool wait) { DCHECK_GT(process_id, 1) << " tried to kill invalid process_id"; if (process_id <= 1) return false; bool result = kill(process_id, SIGTERM) == 0; if (result && wait) { int tries = 60; if (RunningOnValgrind()) { // Wait for some extra time when running under Valgrind since the child // processes may take some time doing leak checking. tries *= 2; } unsigned sleep_ms = 4; // The process may not end immediately due to pending I/O bool exited = false; while (tries-- > 0) { pid_t pid = HANDLE_EINTR(waitpid(process_id, NULL, WNOHANG)); if (pid == process_id) { exited = true; break; } if (pid == -1) { if (errno == ECHILD) { // The wait may fail with ECHILD if another process also waited for // the same pid, causing the process state to get cleaned up. exited = true; break; } DPLOG(ERROR) << "Error waiting for process " << process_id; } usleep(sleep_ms * 1000); const unsigned kMaxSleepMs = 1000; if (sleep_ms < kMaxSleepMs) sleep_ms *= 2; } // If we're waiting and the child hasn't died by now, force it // with a SIGKILL. if (!exited) result = kill(process_id, SIGKILL) == 0; } if (!result) DPLOG(ERROR) << "Unable to terminate process " << process_id; return result; } bool KillProcessGroup(ProcessHandle process_group_id) { bool result = kill(-1 * process_group_id, SIGKILL) == 0; if (!result) DPLOG(ERROR) << "Unable to terminate process group " << process_group_id; return result; } TerminationStatus GetTerminationStatus(ProcessHandle handle, int* exit_code) { return GetTerminationStatusImpl(handle, false /* can_block */, exit_code); } TerminationStatus WaitForTerminationStatus(ProcessHandle handle, int* exit_code) { return GetTerminationStatusImpl(handle, true /* can_block */, exit_code); } bool WaitForExitCode(ProcessHandle handle, int* exit_code) { int status; if (HANDLE_EINTR(waitpid(handle, &status, 0)) == -1) { NOTREACHED(); return false; } if (WIFEXITED(status)) { *exit_code = WEXITSTATUS(status); return true; } // If it didn't exit cleanly, it must have been signaled. DCHECK(WIFSIGNALED(status)); return false; } bool WaitForExitCodeWithTimeout(ProcessHandle handle, int* exit_code, base::TimeDelta timeout) { bool waitpid_success = false; int status = WaitpidWithTimeout(handle, timeout.InMilliseconds(), &waitpid_success); if (status == -1) return false; if (!waitpid_success) return false; if (WIFSIGNALED(status)) { *exit_code = -1; return true; } if (WIFEXITED(status)) { *exit_code = WEXITSTATUS(status); return true; } return false; } bool WaitForProcessesToExit(const FilePath::StringType& executable_name, base::TimeDelta wait, const ProcessFilter* filter) { bool result = false; // TODO(port): This is inefficient, but works if there are multiple procs. // TODO(port): use waitpid to avoid leaving zombies around base::TimeTicks end_time = base::TimeTicks::Now() + wait; do { NamedProcessIterator iter(executable_name, filter); if (!iter.NextProcessEntry()) { result = true; break; } base::PlatformThread::Sleep(base::TimeDelta::FromMilliseconds(100)); } while ((end_time - base::TimeTicks::Now()) > base::TimeDelta()); return result; } #if defined(OS_MACOSX) // Using kqueue on Mac so that we can wait on non-child processes. // We can't use kqueues on child processes because we need to reap // our own children using wait. static bool WaitForSingleNonChildProcess(ProcessHandle handle, base::TimeDelta wait) { DCHECK_GT(handle, 0); DCHECK(wait.InMilliseconds() == base::kNoTimeout || wait > base::TimeDelta()); int kq = kqueue(); if (kq == -1) { DPLOG(ERROR) << "kqueue"; return false; } file_util::ScopedFD kq_closer(&kq); struct kevent change = {0}; EV_SET(&change, handle, EVFILT_PROC, EV_ADD, NOTE_EXIT, 0, NULL); int result = HANDLE_EINTR(kevent(kq, &change, 1, NULL, 0, NULL)); if (result == -1) { if (errno == ESRCH) { // If the process wasn't found, it must be dead. return true; } DPLOG(ERROR) << "kevent (setup " << handle << ")"; return false; } // Keep track of the elapsed time to be able to restart kevent if it's // interrupted. bool wait_forever = wait.InMilliseconds() == base::kNoTimeout; base::TimeDelta remaining_delta; base::TimeTicks deadline; if (!wait_forever) { remaining_delta = wait; deadline = base::TimeTicks::Now() + remaining_delta; } result = -1; struct kevent event = {0}; while (wait_forever || remaining_delta > base::TimeDelta()) { struct timespec remaining_timespec; struct timespec* remaining_timespec_ptr; if (wait_forever) { remaining_timespec_ptr = NULL; } else { remaining_timespec = remaining_delta.ToTimeSpec(); remaining_timespec_ptr = &remaining_timespec; } result = kevent(kq, NULL, 0, &event, 1, remaining_timespec_ptr); if (result == -1 && errno == EINTR) { if (!wait_forever) { remaining_delta = deadline - base::TimeTicks::Now(); } result = 0; } else { break; } } if (result < 0) { DPLOG(ERROR) << "kevent (wait " << handle << ")"; return false; } else if (result > 1) { DLOG(ERROR) << "kevent (wait " << handle << "): unexpected result " << result; return false; } else if (result == 0) { // Timed out. return false; } DCHECK_EQ(result, 1); if (event.filter != EVFILT_PROC || (event.fflags & NOTE_EXIT) == 0 || event.ident != static_cast(handle)) { DLOG(ERROR) << "kevent (wait " << handle << "): unexpected event: filter=" << event.filter << ", fflags=" << event.fflags << ", ident=" << event.ident; return false; } return true; } #endif // OS_MACOSX bool WaitForSingleProcess(ProcessHandle handle, base::TimeDelta wait) { ProcessHandle parent_pid = GetParentProcessId(handle); ProcessHandle our_pid = Process::Current().handle(); if (parent_pid != our_pid) { #if defined(OS_MACOSX) // On Mac we can wait on non child processes. return WaitForSingleNonChildProcess(handle, wait); #else // Currently on Linux we can't handle non child processes. NOTIMPLEMENTED(); #endif // OS_MACOSX } bool waitpid_success; int status = -1; if (wait.InMilliseconds() == base::kNoTimeout) { waitpid_success = (HANDLE_EINTR(waitpid(handle, &status, 0)) != -1); } else { status = WaitpidWithTimeout( handle, wait.InMilliseconds(), &waitpid_success); } if (status != -1) { DCHECK(waitpid_success); return WIFEXITED(status); } else { return false; } } bool CleanupProcesses(const FilePath::StringType& executable_name, base::TimeDelta wait, int exit_code, const ProcessFilter* filter) { bool exited_cleanly = WaitForProcessesToExit(executable_name, wait, filter); if (!exited_cleanly) KillProcesses(executable_name, exit_code, filter); return exited_cleanly; } #if !defined(OS_MACOSX) namespace { // Return true if the given child is dead. This will also reap the process. // Doesn't block. static bool IsChildDead(pid_t child) { const pid_t result = HANDLE_EINTR(waitpid(child, NULL, WNOHANG)); if (result == -1) { DPLOG(ERROR) << "waitpid(" << child << ")"; NOTREACHED(); } else if (result > 0) { // The child has died. return true; } return false; } // A thread class which waits for the given child to exit and reaps it. // If the child doesn't exit within a couple of seconds, kill it. class BackgroundReaper : public PlatformThread::Delegate { public: BackgroundReaper(pid_t child, unsigned timeout) : child_(child), timeout_(timeout) { } // Overridden from PlatformThread::Delegate: virtual void ThreadMain() OVERRIDE { WaitForChildToDie(); delete this; } void WaitForChildToDie() { // Wait forever case. if (timeout_ == 0) { pid_t r = HANDLE_EINTR(waitpid(child_, NULL, 0)); if (r != child_) { DPLOG(ERROR) << "While waiting for " << child_ << " to terminate, we got the following result: " << r; } return; } // There's no good way to wait for a specific child to exit in a timed // fashion. (No kqueue on Linux), so we just loop and sleep. // Wait for 2 * timeout_ 500 milliseconds intervals. for (unsigned i = 0; i < 2 * timeout_; ++i) { PlatformThread::Sleep(TimeDelta::FromMilliseconds(500)); if (IsChildDead(child_)) return; } if (kill(child_, SIGKILL) == 0) { // SIGKILL is uncatchable. Since the signal was delivered, we can // just wait for the process to die now in a blocking manner. if (HANDLE_EINTR(waitpid(child_, NULL, 0)) < 0) DPLOG(WARNING) << "waitpid"; } else { DLOG(ERROR) << "While waiting for " << child_ << " to terminate we" << " failed to deliver a SIGKILL signal (" << errno << ")."; } } private: const pid_t child_; // Number of seconds to wait, if 0 then wait forever and do not attempt to // kill |child_|. const unsigned timeout_; DISALLOW_COPY_AND_ASSIGN(BackgroundReaper); }; } // namespace void EnsureProcessTerminated(ProcessHandle process) { // If the child is already dead, then there's nothing to do. if (IsChildDead(process)) return; const unsigned timeout = 2; // seconds BackgroundReaper* reaper = new BackgroundReaper(process, timeout); PlatformThread::CreateNonJoinable(0, reaper); } void EnsureProcessGetsReaped(ProcessHandle process) { // If the child is already dead, then there's nothing to do. if (IsChildDead(process)) return; BackgroundReaper* reaper = new BackgroundReaper(process, 0); PlatformThread::CreateNonJoinable(0, reaper); } #endif // !defined(OS_MACOSX) } // namespace base