DASH Media Packaging SDK
 All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator
box_definitions.cc
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "packager/media/formats/mp4/box_definitions.h"
6 
7 #include <limits>
8 
9 #include "packager/base/logging.h"
10 #include "packager/media/base/bit_reader.h"
11 #include "packager/media/base/macros.h"
12 #include "packager/media/base/rcheck.h"
13 #include "packager/media/formats/mp4/box_buffer.h"
14 
15 namespace {
16 const uint32_t kFourCCSize = 4;
17 
18 // Key Id size as defined in CENC spec.
19 const uint32_t kCencKeyIdSize = 16;
20 
21 // 9 uint32_t in big endian formatted array.
22 const uint8_t kUnityMatrix[] = {0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
23  0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
24  0, 0, 0, 0, 0, 0, 0, 0, 0x40, 0, 0, 0};
25 
26 // Default entries for HandlerReference box.
27 const char kVideoHandlerName[] = "VideoHandler";
28 const char kAudioHandlerName[] = "SoundHandler";
29 const char kTextHandlerName[] = "TextHandler";
30 
31 // Default values for VideoSampleEntry box.
32 const uint32_t kVideoResolution = 0x00480000; // 72 dpi.
33 const uint16_t kVideoFrameCount = 1;
34 const uint16_t kVideoDepth = 0x0018;
35 
36 const uint32_t kCompressorNameSize = 32u;
37 const char kAvcCompressorName[] = "\012AVC Coding";
38 const char kHevcCompressorName[] = "\013HEVC Coding";
39 const char kVpcCompressorName[] = "\012VPC Coding";
40 
41 // Using negative value as "not set". It is very unlikely that 2^31 cues happen
42 // at once.
43 const int kCueSourceIdNotSet = -1;
44 
45 const size_t kInvalidIvSize = 1;
46 // According to ISO/IEC FDIS 23001-7: CENC spec, IV should be either
47 // 64-bit (8-byte) or 128-bit (16-byte).
48 // |per_sample_iv_size| of 0 means constant_iv is used.
49 bool IsIvSizeValid(size_t per_sample_iv_size) {
50  return per_sample_iv_size == 0 || per_sample_iv_size == 8 ||
51  per_sample_iv_size == 16;
52 }
53 
54 // Default values to construct the following fields in ddts box. Values are set
55 // according to FFMPEG.
56 // bit(2) FrameDuration; // 3 = 4096
57 // bit(5) StreamConstruction; // 18
58 // bit(1) CoreLFEPresent; // 0 = none
59 // bit(6) CoreLayout; // 31 = ignore core layout
60 // bit(14) CoreSize; // 0
61 // bit(1) StereoDownmix // 0 = none
62 // bit(3) RepresentationType; // 4
63 // bit(16) ChannelLayout; // 0xf = 5.1 channel layout.
64 // bit(1) MultiAssetFlag // 0 = single asset
65 // bit(1) LBRDurationMod // 0 = ignore
66 // bit(1) ReservedBoxPresent // 0 = none
67 // bit(5) Reserved // 0
68 const uint8_t kDdtsExtraData[] = {0xe4, 0x7c, 0, 4, 0, 0x0f, 0};
69 
70 // ID3v2 header: http://id3.org/id3v2.4.0-structure
71 const uint32_t kID3v2HeaderSize = 10;
72 const char kID3v2Identifier[] = "ID3";
73 const uint16_t kID3v2Version = 0x0400; // id3v2.4.0
74 
75 // Utility functions to check if the 64bit integers can fit in 32bit integer.
76 bool IsFitIn32Bits(uint64_t a) {
77  return a <= std::numeric_limits<uint32_t>::max();
78 }
79 
80 bool IsFitIn32Bits(int64_t a) {
81  return a <= std::numeric_limits<int32_t>::max() &&
82  a >= std::numeric_limits<int32_t>::min();
83 }
84 
85 template <typename T1, typename T2>
86 bool IsFitIn32Bits(T1 a1, T2 a2) {
87  return IsFitIn32Bits(a1) && IsFitIn32Bits(a2);
88 }
89 
90 template <typename T1, typename T2, typename T3>
91 bool IsFitIn32Bits(T1 a1, T2 a2, T3 a3) {
92  return IsFitIn32Bits(a1) && IsFitIn32Bits(a2) && IsFitIn32Bits(a3);
93 }
94 
95 } // namespace
96 
97 namespace edash_packager {
98 namespace media {
99 namespace mp4 {
100 
101 namespace {
102 
103 TrackType FourCCToTrackType(FourCC fourcc) {
104  switch (fourcc) {
105  case FOURCC_vide:
106  return kVideo;
107  case FOURCC_soun:
108  return kAudio;
109  case FOURCC_text:
110  return kText;
111  default:
112  return kInvalid;
113  }
114 }
115 
116 FourCC TrackTypeToFourCC(TrackType track_type) {
117  switch (track_type) {
118  case kVideo:
119  return FOURCC_vide;
120  case kAudio:
121  return FOURCC_soun;
122  case kText:
123  return FOURCC_text;
124  default:
125  return FOURCC_NULL;
126  }
127 }
128 
129 } // namespace
130 
131 FileType::FileType() : major_brand(FOURCC_NULL), minor_version(0) {}
132 FileType::~FileType() {}
133 FourCC FileType::BoxType() const { return FOURCC_ftyp; }
134 
135 bool FileType::ReadWriteInternal(BoxBuffer* buffer) {
136  RCHECK(ReadWriteHeaderInternal(buffer) &&
137  buffer->ReadWriteFourCC(&major_brand) &&
138  buffer->ReadWriteUInt32(&minor_version));
139  size_t num_brands;
140  if (buffer->Reading()) {
141  RCHECK(buffer->BytesLeft() % sizeof(FourCC) == 0);
142  num_brands = buffer->BytesLeft() / sizeof(FourCC);
143  compatible_brands.resize(num_brands);
144  } else {
145  num_brands = compatible_brands.size();
146  }
147  for (size_t i = 0; i < num_brands; ++i)
148  RCHECK(buffer->ReadWriteFourCC(&compatible_brands[i]));
149  return true;
150 }
151 
152 uint32_t FileType::ComputeSizeInternal() {
153  return HeaderSize() + kFourCCSize + sizeof(minor_version) +
154  kFourCCSize * compatible_brands.size();
155 }
156 
157 FourCC SegmentType::BoxType() const { return FOURCC_styp; }
158 
159 ProtectionSystemSpecificHeader::ProtectionSystemSpecificHeader() {}
160 ProtectionSystemSpecificHeader::~ProtectionSystemSpecificHeader() {}
161 FourCC ProtectionSystemSpecificHeader::BoxType() const { return FOURCC_pssh; }
162 
163 bool ProtectionSystemSpecificHeader::ReadWriteInternal(BoxBuffer* buffer) {
164  if (buffer->Reading()) {
165  BoxReader* reader = buffer->reader();
166  DCHECK(reader);
167  raw_box.assign(reader->data(), reader->data() + reader->size());
168  } else {
169  DCHECK(!raw_box.empty());
170  buffer->writer()->AppendVector(raw_box);
171  }
172 
173  return true;
174 }
175 
176 uint32_t ProtectionSystemSpecificHeader::ComputeSizeInternal() {
177  return raw_box.size();
178 }
179 
180 SampleAuxiliaryInformationOffset::SampleAuxiliaryInformationOffset() {}
181 SampleAuxiliaryInformationOffset::~SampleAuxiliaryInformationOffset() {}
182 FourCC SampleAuxiliaryInformationOffset::BoxType() const { return FOURCC_saio; }
183 
184 bool SampleAuxiliaryInformationOffset::ReadWriteInternal(BoxBuffer* buffer) {
185  RCHECK(ReadWriteHeaderInternal(buffer));
186  if (flags & 1)
187  RCHECK(buffer->IgnoreBytes(8)); // aux_info_type and parameter.
188 
189  uint32_t count = offsets.size();
190  RCHECK(buffer->ReadWriteUInt32(&count));
191  offsets.resize(count);
192 
193  size_t num_bytes = (version == 1) ? sizeof(uint64_t) : sizeof(uint32_t);
194  for (uint32_t i = 0; i < count; ++i)
195  RCHECK(buffer->ReadWriteUInt64NBytes(&offsets[i], num_bytes));
196  return true;
197 }
198 
199 uint32_t SampleAuxiliaryInformationOffset::ComputeSizeInternal() {
200  // This box is optional. Skip it if it is empty.
201  if (offsets.size() == 0)
202  return 0;
203  size_t num_bytes = (version == 1) ? sizeof(uint64_t) : sizeof(uint32_t);
204  return HeaderSize() + sizeof(uint32_t) + num_bytes * offsets.size();
205 }
206 
207 SampleAuxiliaryInformationSize::SampleAuxiliaryInformationSize()
208  : default_sample_info_size(0), sample_count(0) {}
209 SampleAuxiliaryInformationSize::~SampleAuxiliaryInformationSize() {}
210 FourCC SampleAuxiliaryInformationSize::BoxType() const { return FOURCC_saiz; }
211 
212 bool SampleAuxiliaryInformationSize::ReadWriteInternal(BoxBuffer* buffer) {
213  RCHECK(ReadWriteHeaderInternal(buffer));
214  if (flags & 1)
215  RCHECK(buffer->IgnoreBytes(8));
216 
217  RCHECK(buffer->ReadWriteUInt8(&default_sample_info_size) &&
218  buffer->ReadWriteUInt32(&sample_count));
219  if (default_sample_info_size == 0)
220  RCHECK(buffer->ReadWriteVector(&sample_info_sizes, sample_count));
221  return true;
222 }
223 
224 uint32_t SampleAuxiliaryInformationSize::ComputeSizeInternal() {
225  // This box is optional. Skip it if it is empty.
226  if (sample_count == 0)
227  return 0;
228  return HeaderSize() + sizeof(default_sample_info_size) +
229  sizeof(sample_count) +
230  (default_sample_info_size == 0 ? sample_info_sizes.size() : 0);
231 }
232 
233 SampleEncryptionEntry::SampleEncryptionEntry() {}
234 SampleEncryptionEntry::~SampleEncryptionEntry() {}
235 
236 bool SampleEncryptionEntry::ReadWrite(uint8_t iv_size,
237  bool has_subsamples,
238  BoxBuffer* buffer) {
239  DCHECK(IsIvSizeValid(iv_size));
240  DCHECK(buffer);
241 
242  RCHECK(buffer->ReadWriteVector(&initialization_vector, iv_size));
243 
244  if (!has_subsamples) {
245  subsamples.clear();
246  return true;
247  }
248 
249  uint16_t subsample_count = subsamples.size();
250  RCHECK(buffer->ReadWriteUInt16(&subsample_count));
251  RCHECK(subsample_count > 0);
252  subsamples.resize(subsample_count);
253  for (auto& subsample : subsamples) {
254  RCHECK(buffer->ReadWriteUInt16(&subsample.clear_bytes) &&
255  buffer->ReadWriteUInt32(&subsample.cipher_bytes));
256  }
257  return true;
258 }
259 
261  bool has_subsamples,
262  BufferReader* reader) {
263  DCHECK(IsIvSizeValid(iv_size));
264  DCHECK(reader);
265 
266  initialization_vector.resize(iv_size);
267  RCHECK(reader->ReadToVector(&initialization_vector, iv_size));
268 
269  if (!has_subsamples) {
270  subsamples.clear();
271  return true;
272  }
273 
274  uint16_t subsample_count;
275  RCHECK(reader->Read2(&subsample_count));
276  RCHECK(subsample_count > 0);
277  subsamples.resize(subsample_count);
278  for (auto& subsample : subsamples) {
279  RCHECK(reader->Read2(&subsample.clear_bytes) &&
280  reader->Read4(&subsample.cipher_bytes));
281  }
282  return true;
283 }
284 
286  const uint32_t subsample_entry_size = sizeof(uint16_t) + sizeof(uint32_t);
287  const uint16_t subsample_count = subsamples.size();
288  return initialization_vector.size() +
289  (subsample_count > 0 ? (sizeof(subsample_count) +
290  subsample_entry_size * subsample_count)
291  : 0);
292 }
293 
295  uint32_t size = 0;
296  for (uint32_t i = 0; i < subsamples.size(); ++i)
297  size += subsamples[i].clear_bytes + subsamples[i].cipher_bytes;
298  return size;
299 }
300 
301 SampleEncryption::SampleEncryption() : iv_size(kInvalidIvSize) {}
302 SampleEncryption::~SampleEncryption() {}
303 FourCC SampleEncryption::BoxType() const { return FOURCC_senc; }
304 
305 bool SampleEncryption::ReadWriteInternal(BoxBuffer* buffer) {
306  RCHECK(ReadWriteHeaderInternal(buffer));
307 
308  // If we don't know |iv_size|, store sample encryption data to parse later
309  // after we know iv_size.
310  if (buffer->Reading() && iv_size == kInvalidIvSize) {
311  RCHECK(
312  buffer->ReadWriteVector(&sample_encryption_data, buffer->BytesLeft()));
313  return true;
314  }
315 
316  if (!IsIvSizeValid(iv_size)) {
317  LOG(ERROR)
318  << "IV_size can only be 8 or 16 or 0 for constant iv, but seeing "
319  << iv_size;
320  return false;
321  }
322 
323  uint32_t sample_count = sample_encryption_entries.size();
324  RCHECK(buffer->ReadWriteUInt32(&sample_count));
325 
326  sample_encryption_entries.resize(sample_count);
327  for (auto& sample_encryption_entry : sample_encryption_entries) {
328  RCHECK(sample_encryption_entry.ReadWrite(
329  iv_size, flags & kUseSubsampleEncryption, buffer));
330  }
331  return true;
332 }
333 
334 uint32_t SampleEncryption::ComputeSizeInternal() {
335  const uint32_t sample_count = sample_encryption_entries.size();
336  if (sample_count == 0) {
337  // Sample encryption box is optional. Skip it if it is empty.
338  return 0;
339  }
340 
341  DCHECK(IsIvSizeValid(iv_size));
342  uint32_t box_size = HeaderSize() + sizeof(sample_count);
343  if (flags & kUseSubsampleEncryption) {
344  for (const SampleEncryptionEntry& sample_encryption_entry :
345  sample_encryption_entries) {
346  box_size += sample_encryption_entry.ComputeSize();
347  }
348  } else {
349  box_size += sample_count * iv_size;
350  }
351  return box_size;
352 }
353 
355  size_t iv_size,
356  std::vector<SampleEncryptionEntry>* sample_encryption_entries) const {
357  DCHECK(IsIvSizeValid(iv_size));
358 
359  BufferReader reader(sample_encryption_data.data(),
360  sample_encryption_data.size());
361  uint32_t sample_count = 0;
362  RCHECK(reader.Read4(&sample_count));
363 
364  sample_encryption_entries->resize(sample_count);
365  for (auto& sample_encryption_entry : *sample_encryption_entries) {
366  RCHECK(sample_encryption_entry.ParseFromBuffer(
367  iv_size, flags & kUseSubsampleEncryption, &reader));
368  }
369  return true;
370 }
371 
372 OriginalFormat::OriginalFormat() : format(FOURCC_NULL) {}
373 OriginalFormat::~OriginalFormat() {}
374 FourCC OriginalFormat::BoxType() const { return FOURCC_frma; }
375 
376 bool OriginalFormat::ReadWriteInternal(BoxBuffer* buffer) {
377  return ReadWriteHeaderInternal(buffer) && buffer->ReadWriteFourCC(&format);
378 }
379 
380 uint32_t OriginalFormat::ComputeSizeInternal() {
381  return HeaderSize() + kFourCCSize;
382 }
383 
384 SchemeType::SchemeType() : type(FOURCC_NULL), version(0) {}
385 SchemeType::~SchemeType() {}
386 FourCC SchemeType::BoxType() const { return FOURCC_schm; }
387 
388 bool SchemeType::ReadWriteInternal(BoxBuffer* buffer) {
389  RCHECK(ReadWriteHeaderInternal(buffer) &&
390  buffer->ReadWriteFourCC(&type) &&
391  buffer->ReadWriteUInt32(&version));
392  return true;
393 }
394 
395 uint32_t SchemeType::ComputeSizeInternal() {
396  return HeaderSize() + kFourCCSize + sizeof(version);
397 }
398 
399 TrackEncryption::TrackEncryption()
400  : default_is_protected(0),
401  default_per_sample_iv_size(0),
402  default_kid(16, 0),
403  default_crypt_byte_block(0),
404  default_skip_byte_block(0) {}
405 TrackEncryption::~TrackEncryption() {}
406 FourCC TrackEncryption::BoxType() const { return FOURCC_tenc; }
407 
408 bool TrackEncryption::ReadWriteInternal(BoxBuffer* buffer) {
409  if (!buffer->Reading()) {
410  if (default_kid.size() != kCencKeyIdSize) {
411  LOG(WARNING) << "CENC defines key id length of " << kCencKeyIdSize
412  << " bytes; got " << default_kid.size()
413  << ". Resized accordingly.";
414  default_kid.resize(kCencKeyIdSize);
415  }
416  RCHECK(default_crypt_byte_block < 16 && default_skip_byte_block < 16);
417  if (default_crypt_byte_block != 0 && default_skip_byte_block != 0) {
418  // Version 1 box is needed for pattern-based encryption.
419  version = 1;
420  }
421  }
422 
423  RCHECK(ReadWriteHeaderInternal(buffer) &&
424  buffer->IgnoreBytes(1)); // reserved.
425 
426  uint8_t pattern = default_crypt_byte_block << 4 | default_skip_byte_block;
427  RCHECK(buffer->ReadWriteUInt8(&pattern));
428  default_crypt_byte_block = pattern >> 4;
429  default_skip_byte_block = pattern & 0x0F;
430 
431  RCHECK(buffer->ReadWriteUInt8(&default_is_protected) &&
432  buffer->ReadWriteUInt8(&default_per_sample_iv_size) &&
433  buffer->ReadWriteVector(&default_kid, kCencKeyIdSize));
434 
435  if (default_is_protected == 1) {
436  if (default_per_sample_iv_size == 0) { // For constant iv.
437  uint8_t default_constant_iv_size = default_constant_iv.size();
438  RCHECK(buffer->ReadWriteUInt8(&default_constant_iv_size));
439  RCHECK(default_constant_iv_size == 8 || default_constant_iv_size == 16);
440  RCHECK(buffer->ReadWriteVector(&default_constant_iv,
441  default_constant_iv_size));
442  } else {
443  RCHECK(default_per_sample_iv_size == 8 ||
444  default_per_sample_iv_size == 16);
445  RCHECK(default_constant_iv.empty());
446  }
447  } else {
448  // Expect |default_is_protected| to be 0, i.e. not protected. Other values
449  // of |default_is_protected| is not supported.
450  RCHECK(default_is_protected == 0);
451  RCHECK(default_per_sample_iv_size == 0);
452  RCHECK(default_constant_iv.empty());
453  }
454  return true;
455 }
456 
457 uint32_t TrackEncryption::ComputeSizeInternal() {
458  return HeaderSize() + sizeof(uint32_t) + kCencKeyIdSize +
459  (default_constant_iv.empty() ? 0 : (sizeof(uint8_t) +
460  default_constant_iv.size()));
461 }
462 
463 SchemeInfo::SchemeInfo() {}
464 SchemeInfo::~SchemeInfo() {}
465 FourCC SchemeInfo::BoxType() const { return FOURCC_schi; }
466 
467 bool SchemeInfo::ReadWriteInternal(BoxBuffer* buffer) {
468  RCHECK(ReadWriteHeaderInternal(buffer) && buffer->PrepareChildren() &&
469  buffer->ReadWriteChild(&track_encryption));
470  return true;
471 }
472 
473 uint32_t SchemeInfo::ComputeSizeInternal() {
474  return HeaderSize() + track_encryption.ComputeSize();
475 }
476 
477 ProtectionSchemeInfo::ProtectionSchemeInfo() {}
478 ProtectionSchemeInfo::~ProtectionSchemeInfo() {}
479 FourCC ProtectionSchemeInfo::BoxType() const { return FOURCC_sinf; }
480 
481 bool ProtectionSchemeInfo::ReadWriteInternal(BoxBuffer* buffer) {
482  RCHECK(ReadWriteHeaderInternal(buffer) &&
483  buffer->PrepareChildren() &&
484  buffer->ReadWriteChild(&format) &&
485  buffer->ReadWriteChild(&type));
486  RCHECK(type.type == FOURCC_cenc || type.type == FOURCC_cbc1 ||
487  type.type == FOURCC_cens || type.type == FOURCC_cbcs);
488  RCHECK(buffer->ReadWriteChild(&info));
489  // Other protection schemes are silently ignored. Since the protection scheme
490  // type can't be determined until this box is opened, we return 'true' for
491  // non-CENC protection scheme types. It is the parent box's responsibility to
492  // ensure that this scheme type is a supported one.
493  return true;
494 }
495 
496 uint32_t ProtectionSchemeInfo::ComputeSizeInternal() {
497  // Skip sinf box if it is not initialized.
498  if (format.format == FOURCC_NULL)
499  return 0;
500  return HeaderSize() + format.ComputeSize() + type.ComputeSize() +
501  info.ComputeSize();
502 }
503 
504 MovieHeader::MovieHeader()
505  : creation_time(0),
506  modification_time(0),
507  timescale(0),
508  duration(0),
509  rate(1 << 16),
510  volume(1 << 8),
511  next_track_id(0) {}
512 MovieHeader::~MovieHeader() {}
513 FourCC MovieHeader::BoxType() const { return FOURCC_mvhd; }
514 
515 bool MovieHeader::ReadWriteInternal(BoxBuffer* buffer) {
516  RCHECK(ReadWriteHeaderInternal(buffer));
517 
518  size_t num_bytes = (version == 1) ? sizeof(uint64_t) : sizeof(uint32_t);
519  RCHECK(buffer->ReadWriteUInt64NBytes(&creation_time, num_bytes) &&
520  buffer->ReadWriteUInt64NBytes(&modification_time, num_bytes) &&
521  buffer->ReadWriteUInt32(&timescale) &&
522  buffer->ReadWriteUInt64NBytes(&duration, num_bytes));
523 
524  std::vector<uint8_t> matrix(kUnityMatrix,
525  kUnityMatrix + arraysize(kUnityMatrix));
526  RCHECK(buffer->ReadWriteInt32(&rate) &&
527  buffer->ReadWriteInt16(&volume) &&
528  buffer->IgnoreBytes(10) && // reserved
529  buffer->ReadWriteVector(&matrix, matrix.size()) &&
530  buffer->IgnoreBytes(24) && // predefined zero
531  buffer->ReadWriteUInt32(&next_track_id));
532  return true;
533 }
534 
535 uint32_t MovieHeader::ComputeSizeInternal() {
536  version = IsFitIn32Bits(creation_time, modification_time, duration) ? 0 : 1;
537  return HeaderSize() + sizeof(uint32_t) * (1 + version) * 3 +
538  sizeof(timescale) + sizeof(rate) + sizeof(volume) +
539  sizeof(next_track_id) + sizeof(kUnityMatrix) + 10 +
540  24; // 10 bytes reserved, 24 bytes predefined.
541 }
542 
543 TrackHeader::TrackHeader()
544  : creation_time(0),
545  modification_time(0),
546  track_id(0),
547  duration(0),
548  layer(0),
549  alternate_group(0),
550  volume(-1),
551  width(0),
552  height(0) {
553  flags = kTrackEnabled | kTrackInMovie;
554 }
555 TrackHeader::~TrackHeader() {}
556 FourCC TrackHeader::BoxType() const { return FOURCC_tkhd; }
557 
558 bool TrackHeader::ReadWriteInternal(BoxBuffer* buffer) {
559  RCHECK(ReadWriteHeaderInternal(buffer));
560 
561  size_t num_bytes = (version == 1) ? sizeof(uint64_t) : sizeof(uint32_t);
562  RCHECK(buffer->ReadWriteUInt64NBytes(&creation_time, num_bytes) &&
563  buffer->ReadWriteUInt64NBytes(&modification_time, num_bytes) &&
564  buffer->ReadWriteUInt32(&track_id) &&
565  buffer->IgnoreBytes(4) && // reserved
566  buffer->ReadWriteUInt64NBytes(&duration, num_bytes));
567 
568  if (!buffer->Reading()) {
569  // Set default value for volume, if track is audio, 0x100 else 0.
570  if (volume == -1)
571  volume = (width != 0 && height != 0) ? 0 : 0x100;
572  }
573  std::vector<uint8_t> matrix(kUnityMatrix,
574  kUnityMatrix + arraysize(kUnityMatrix));
575  RCHECK(buffer->IgnoreBytes(8) && // reserved
576  buffer->ReadWriteInt16(&layer) &&
577  buffer->ReadWriteInt16(&alternate_group) &&
578  buffer->ReadWriteInt16(&volume) &&
579  buffer->IgnoreBytes(2) && // reserved
580  buffer->ReadWriteVector(&matrix, matrix.size()) &&
581  buffer->ReadWriteUInt32(&width) &&
582  buffer->ReadWriteUInt32(&height));
583  return true;
584 }
585 
586 uint32_t TrackHeader::ComputeSizeInternal() {
587  version = IsFitIn32Bits(creation_time, modification_time, duration) ? 0 : 1;
588  return HeaderSize() + sizeof(track_id) +
589  sizeof(uint32_t) * (1 + version) * 3 + sizeof(layer) +
590  sizeof(alternate_group) + sizeof(volume) + sizeof(width) +
591  sizeof(height) + sizeof(kUnityMatrix) + 14; // 14 bytes reserved.
592 }
593 
594 SampleDescription::SampleDescription() : type(kInvalid) {}
595 SampleDescription::~SampleDescription() {}
596 FourCC SampleDescription::BoxType() const { return FOURCC_stsd; }
597 
598 bool SampleDescription::ReadWriteInternal(BoxBuffer* buffer) {
599  uint32_t count = 0;
600  switch (type) {
601  case kVideo:
602  count = video_entries.size();
603  break;
604  case kAudio:
605  count = audio_entries.size();
606  break;
607  case kText:
608  count = text_entries.size();
609  break;
610  default:
611  NOTIMPLEMENTED() << "SampleDecryption type " << type
612  << " is not handled. Skipping.";
613  }
614  RCHECK(ReadWriteHeaderInternal(buffer) &&
615  buffer->ReadWriteUInt32(&count));
616 
617  if (buffer->Reading()) {
618  BoxReader* reader = buffer->reader();
619  DCHECK(reader);
620  video_entries.clear();
621  audio_entries.clear();
622  // Note: this value is preset before scanning begins. See comments in the
623  // Parse(Media*) function.
624  if (type == kVideo) {
625  RCHECK(reader->ReadAllChildren(&video_entries));
626  RCHECK(video_entries.size() == count);
627  } else if (type == kAudio) {
628  RCHECK(reader->ReadAllChildren(&audio_entries));
629  RCHECK(audio_entries.size() == count);
630  } else if (type == kText) {
631  RCHECK(reader->ReadAllChildren(&text_entries));
632  RCHECK(text_entries.size() == count);
633  }
634  } else {
635  DCHECK_LT(0u, count);
636  if (type == kVideo) {
637  for (uint32_t i = 0; i < count; ++i)
638  RCHECK(buffer->ReadWriteChild(&video_entries[i]));
639  } else if (type == kAudio) {
640  for (uint32_t i = 0; i < count; ++i)
641  RCHECK(buffer->ReadWriteChild(&audio_entries[i]));
642  } else if (type == kText) {
643  for (uint32_t i = 0; i < count; ++i)
644  RCHECK(buffer->ReadWriteChild(&text_entries[i]));
645  } else {
646  NOTIMPLEMENTED();
647  }
648  }
649  return true;
650 }
651 
652 uint32_t SampleDescription::ComputeSizeInternal() {
653  uint32_t box_size = HeaderSize() + sizeof(uint32_t);
654  if (type == kVideo) {
655  for (uint32_t i = 0; i < video_entries.size(); ++i)
656  box_size += video_entries[i].ComputeSize();
657  } else if (type == kAudio) {
658  for (uint32_t i = 0; i < audio_entries.size(); ++i)
659  box_size += audio_entries[i].ComputeSize();
660  } else if (type == kText) {
661  for (uint32_t i = 0; i < text_entries.size(); ++i)
662  box_size += text_entries[i].ComputeSize();
663  }
664  return box_size;
665 }
666 
667 DecodingTimeToSample::DecodingTimeToSample() {}
668 DecodingTimeToSample::~DecodingTimeToSample() {}
669 FourCC DecodingTimeToSample::BoxType() const { return FOURCC_stts; }
670 
671 bool DecodingTimeToSample::ReadWriteInternal(BoxBuffer* buffer) {
672  uint32_t count = decoding_time.size();
673  RCHECK(ReadWriteHeaderInternal(buffer) &&
674  buffer->ReadWriteUInt32(&count));
675 
676  decoding_time.resize(count);
677  for (uint32_t i = 0; i < count; ++i) {
678  RCHECK(buffer->ReadWriteUInt32(&decoding_time[i].sample_count) &&
679  buffer->ReadWriteUInt32(&decoding_time[i].sample_delta));
680  }
681  return true;
682 }
683 
684 uint32_t DecodingTimeToSample::ComputeSizeInternal() {
685  return HeaderSize() + sizeof(uint32_t) +
686  sizeof(DecodingTime) * decoding_time.size();
687 }
688 
689 CompositionTimeToSample::CompositionTimeToSample() {}
690 CompositionTimeToSample::~CompositionTimeToSample() {}
691 FourCC CompositionTimeToSample::BoxType() const { return FOURCC_ctts; }
692 
693 bool CompositionTimeToSample::ReadWriteInternal(BoxBuffer* buffer) {
694  uint32_t count = composition_offset.size();
695  if (!buffer->Reading()) {
696  // Determine whether version 0 or version 1 should be used.
697  // Use version 0 if possible, use version 1 if there is a negative
698  // sample_offset value.
699  version = 0;
700  for (uint32_t i = 0; i < count; ++i) {
701  if (composition_offset[i].sample_offset < 0) {
702  version = 1;
703  break;
704  }
705  }
706  }
707 
708  RCHECK(ReadWriteHeaderInternal(buffer) &&
709  buffer->ReadWriteUInt32(&count));
710 
711  composition_offset.resize(count);
712  for (uint32_t i = 0; i < count; ++i) {
713  RCHECK(buffer->ReadWriteUInt32(&composition_offset[i].sample_count));
714 
715  if (version == 0) {
716  uint32_t sample_offset = composition_offset[i].sample_offset;
717  RCHECK(buffer->ReadWriteUInt32(&sample_offset));
718  composition_offset[i].sample_offset = sample_offset;
719  } else {
720  int32_t sample_offset = composition_offset[i].sample_offset;
721  RCHECK(buffer->ReadWriteInt32(&sample_offset));
722  composition_offset[i].sample_offset = sample_offset;
723  }
724  }
725  return true;
726 }
727 
728 uint32_t CompositionTimeToSample::ComputeSizeInternal() {
729  // This box is optional. Skip it if it is empty.
730  if (composition_offset.empty())
731  return 0;
732  // Structure CompositionOffset contains |sample_offset| (uint32_t) and
733  // |sample_offset| (int64_t). The actual size of |sample_offset| is
734  // 4 bytes (uint32_t for version 0 and int32_t for version 1).
735  const uint32_t kCompositionOffsetSize = sizeof(uint32_t) * 2;
736  return HeaderSize() + sizeof(uint32_t) +
737  kCompositionOffsetSize * composition_offset.size();
738 }
739 
740 SampleToChunk::SampleToChunk() {}
741 SampleToChunk::~SampleToChunk() {}
742 FourCC SampleToChunk::BoxType() const { return FOURCC_stsc; }
743 
744 bool SampleToChunk::ReadWriteInternal(BoxBuffer* buffer) {
745  uint32_t count = chunk_info.size();
746  RCHECK(ReadWriteHeaderInternal(buffer) &&
747  buffer->ReadWriteUInt32(&count));
748 
749  chunk_info.resize(count);
750  for (uint32_t i = 0; i < count; ++i) {
751  RCHECK(buffer->ReadWriteUInt32(&chunk_info[i].first_chunk) &&
752  buffer->ReadWriteUInt32(&chunk_info[i].samples_per_chunk) &&
753  buffer->ReadWriteUInt32(&chunk_info[i].sample_description_index));
754  // first_chunk values are always increasing.
755  RCHECK(i == 0 ? chunk_info[i].first_chunk == 1
756  : chunk_info[i].first_chunk > chunk_info[i - 1].first_chunk);
757  }
758  return true;
759 }
760 
761 uint32_t SampleToChunk::ComputeSizeInternal() {
762  return HeaderSize() + sizeof(uint32_t) +
763  sizeof(ChunkInfo) * chunk_info.size();
764 }
765 
766 SampleSize::SampleSize() : sample_size(0), sample_count(0) {}
767 SampleSize::~SampleSize() {}
768 FourCC SampleSize::BoxType() const { return FOURCC_stsz; }
769 
770 bool SampleSize::ReadWriteInternal(BoxBuffer* buffer) {
771  RCHECK(ReadWriteHeaderInternal(buffer) &&
772  buffer->ReadWriteUInt32(&sample_size) &&
773  buffer->ReadWriteUInt32(&sample_count));
774 
775  if (sample_size == 0) {
776  if (buffer->Reading())
777  sizes.resize(sample_count);
778  else
779  DCHECK(sample_count == sizes.size());
780  for (uint32_t i = 0; i < sample_count; ++i)
781  RCHECK(buffer->ReadWriteUInt32(&sizes[i]));
782  }
783  return true;
784 }
785 
786 uint32_t SampleSize::ComputeSizeInternal() {
787  return HeaderSize() + sizeof(sample_size) + sizeof(sample_count) +
788  (sample_size == 0 ? sizeof(uint32_t) * sizes.size() : 0);
789 }
790 
791 CompactSampleSize::CompactSampleSize() : field_size(0) {}
792 CompactSampleSize::~CompactSampleSize() {}
793 FourCC CompactSampleSize::BoxType() const { return FOURCC_stz2; }
794 
795 bool CompactSampleSize::ReadWriteInternal(BoxBuffer* buffer) {
796  uint32_t sample_count = sizes.size();
797  RCHECK(ReadWriteHeaderInternal(buffer) &&
798  buffer->IgnoreBytes(3) &&
799  buffer->ReadWriteUInt8(&field_size) &&
800  buffer->ReadWriteUInt32(&sample_count));
801 
802  // Reserve one more entry if field size is 4 bits.
803  sizes.resize(sample_count + (field_size == 4 ? 1 : 0), 0);
804  switch (field_size) {
805  case 4:
806  for (uint32_t i = 0; i < sample_count; i += 2) {
807  if (buffer->Reading()) {
808  uint8_t size = 0;
809  RCHECK(buffer->ReadWriteUInt8(&size));
810  sizes[i] = size >> 4;
811  sizes[i + 1] = size & 0x0F;
812  } else {
813  DCHECK_LT(sizes[i], 16u);
814  DCHECK_LT(sizes[i + 1], 16u);
815  uint8_t size = (sizes[i] << 4) | sizes[i + 1];
816  RCHECK(buffer->ReadWriteUInt8(&size));
817  }
818  }
819  break;
820  case 8:
821  for (uint32_t i = 0; i < sample_count; ++i) {
822  uint8_t size = sizes[i];
823  RCHECK(buffer->ReadWriteUInt8(&size));
824  sizes[i] = size;
825  }
826  break;
827  case 16:
828  for (uint32_t i = 0; i < sample_count; ++i) {
829  uint16_t size = sizes[i];
830  RCHECK(buffer->ReadWriteUInt16(&size));
831  sizes[i] = size;
832  }
833  break;
834  default:
835  RCHECK(false);
836  }
837  sizes.resize(sample_count);
838  return true;
839 }
840 
841 uint32_t CompactSampleSize::ComputeSizeInternal() {
842  return HeaderSize() + sizeof(uint32_t) + sizeof(uint32_t) +
843  (field_size * sizes.size() + 7) / 8;
844 }
845 
846 ChunkOffset::ChunkOffset() {}
847 ChunkOffset::~ChunkOffset() {}
848 FourCC ChunkOffset::BoxType() const { return FOURCC_stco; }
849 
850 bool ChunkOffset::ReadWriteInternal(BoxBuffer* buffer) {
851  uint32_t count = offsets.size();
852  RCHECK(ReadWriteHeaderInternal(buffer) &&
853  buffer->ReadWriteUInt32(&count));
854 
855  offsets.resize(count);
856  for (uint32_t i = 0; i < count; ++i)
857  RCHECK(buffer->ReadWriteUInt64NBytes(&offsets[i], sizeof(uint32_t)));
858  return true;
859 }
860 
861 uint32_t ChunkOffset::ComputeSizeInternal() {
862  return HeaderSize() + sizeof(uint32_t) + sizeof(uint32_t) * offsets.size();
863 }
864 
865 ChunkLargeOffset::ChunkLargeOffset() {}
866 ChunkLargeOffset::~ChunkLargeOffset() {}
867 FourCC ChunkLargeOffset::BoxType() const { return FOURCC_co64; }
868 
869 bool ChunkLargeOffset::ReadWriteInternal(BoxBuffer* buffer) {
870  uint32_t count = offsets.size();
871 
872  if (!buffer->Reading()) {
873  // Switch to ChunkOffset box if it is able to fit in 32 bits offset.
874  if (count == 0 || IsFitIn32Bits(offsets[count - 1])) {
875  ChunkOffset stco;
876  stco.offsets.swap(offsets);
877  DCHECK(buffer->writer());
878  stco.Write(buffer->writer());
879  stco.offsets.swap(offsets);
880  return true;
881  }
882  }
883 
884  RCHECK(ReadWriteHeaderInternal(buffer) &&
885  buffer->ReadWriteUInt32(&count));
886 
887  offsets.resize(count);
888  for (uint32_t i = 0; i < count; ++i)
889  RCHECK(buffer->ReadWriteUInt64(&offsets[i]));
890  return true;
891 }
892 
893 uint32_t ChunkLargeOffset::ComputeSizeInternal() {
894  uint32_t count = offsets.size();
895  int use_large_offset =
896  (count > 0 && !IsFitIn32Bits(offsets[count - 1])) ? 1 : 0;
897  return HeaderSize() + sizeof(count) +
898  sizeof(uint32_t) * (1 + use_large_offset) * offsets.size();
899 }
900 
901 SyncSample::SyncSample() {}
902 SyncSample::~SyncSample() {}
903 FourCC SyncSample::BoxType() const { return FOURCC_stss; }
904 
905 bool SyncSample::ReadWriteInternal(BoxBuffer* buffer) {
906  uint32_t count = sample_number.size();
907  RCHECK(ReadWriteHeaderInternal(buffer) &&
908  buffer->ReadWriteUInt32(&count));
909 
910  sample_number.resize(count);
911  for (uint32_t i = 0; i < count; ++i)
912  RCHECK(buffer->ReadWriteUInt32(&sample_number[i]));
913  return true;
914 }
915 
916 uint32_t SyncSample::ComputeSizeInternal() {
917  // Sync sample box is optional. Skip it if it is empty.
918  if (sample_number.empty())
919  return 0;
920  return HeaderSize() + sizeof(uint32_t) +
921  sizeof(uint32_t) * sample_number.size();
922 }
923 
924 SampleTable::SampleTable() {}
925 SampleTable::~SampleTable() {}
926 FourCC SampleTable::BoxType() const { return FOURCC_stbl; }
927 
928 bool SampleTable::ReadWriteInternal(BoxBuffer* buffer) {
929  RCHECK(ReadWriteHeaderInternal(buffer) &&
930  buffer->PrepareChildren() &&
931  buffer->ReadWriteChild(&description) &&
932  buffer->ReadWriteChild(&decoding_time_to_sample) &&
933  buffer->TryReadWriteChild(&composition_time_to_sample) &&
934  buffer->ReadWriteChild(&sample_to_chunk));
935 
936  if (buffer->Reading()) {
937  BoxReader* reader = buffer->reader();
938  DCHECK(reader);
939 
940  // Either SampleSize or CompactSampleSize must present.
941  if (reader->ChildExist(&sample_size)) {
942  RCHECK(reader->ReadChild(&sample_size));
943  } else {
944  CompactSampleSize compact_sample_size;
945  RCHECK(reader->ReadChild(&compact_sample_size));
946  sample_size.sample_size = 0;
947  sample_size.sample_count = compact_sample_size.sizes.size();
948  sample_size.sizes.swap(compact_sample_size.sizes);
949  }
950 
951  // Either ChunkOffset or ChunkLargeOffset must present.
952  if (reader->ChildExist(&chunk_large_offset)) {
953  RCHECK(reader->ReadChild(&chunk_large_offset));
954  } else {
955  ChunkOffset chunk_offset;
956  RCHECK(reader->ReadChild(&chunk_offset));
957  chunk_large_offset.offsets.swap(chunk_offset.offsets);
958  }
959  } else {
960  RCHECK(buffer->ReadWriteChild(&sample_size) &&
961  buffer->ReadWriteChild(&chunk_large_offset));
962  }
963  RCHECK(buffer->TryReadWriteChild(&sync_sample));
964  return true;
965 }
966 
967 uint32_t SampleTable::ComputeSizeInternal() {
968  return HeaderSize() + description.ComputeSize() +
969  decoding_time_to_sample.ComputeSize() +
970  composition_time_to_sample.ComputeSize() +
971  sample_to_chunk.ComputeSize() + sample_size.ComputeSize() +
972  chunk_large_offset.ComputeSize() + sync_sample.ComputeSize();
973 }
974 
975 EditList::EditList() {}
976 EditList::~EditList() {}
977 FourCC EditList::BoxType() const { return FOURCC_elst; }
978 
979 bool EditList::ReadWriteInternal(BoxBuffer* buffer) {
980  uint32_t count = edits.size();
981  RCHECK(ReadWriteHeaderInternal(buffer) && buffer->ReadWriteUInt32(&count));
982  edits.resize(count);
983 
984  size_t num_bytes = (version == 1) ? sizeof(uint64_t) : sizeof(uint32_t);
985  for (uint32_t i = 0; i < count; ++i) {
986  RCHECK(
987  buffer->ReadWriteUInt64NBytes(&edits[i].segment_duration, num_bytes) &&
988  buffer->ReadWriteInt64NBytes(&edits[i].media_time, num_bytes) &&
989  buffer->ReadWriteInt16(&edits[i].media_rate_integer) &&
990  buffer->ReadWriteInt16(&edits[i].media_rate_fraction));
991  }
992  return true;
993 }
994 
995 uint32_t EditList::ComputeSizeInternal() {
996  // EditList box is optional. Skip it if it is empty.
997  if (edits.empty())
998  return 0;
999 
1000  version = 0;
1001  for (uint32_t i = 0; i < edits.size(); ++i) {
1002  if (!IsFitIn32Bits(edits[i].segment_duration, edits[i].media_time)) {
1003  version = 1;
1004  break;
1005  }
1006  }
1007  return HeaderSize() + sizeof(uint32_t) +
1008  (sizeof(uint32_t) * (1 + version) * 2 + sizeof(int16_t) * 2) *
1009  edits.size();
1010 }
1011 
1012 Edit::Edit() {}
1013 Edit::~Edit() {}
1014 FourCC Edit::BoxType() const { return FOURCC_edts; }
1015 
1016 bool Edit::ReadWriteInternal(BoxBuffer* buffer) {
1017  return ReadWriteHeaderInternal(buffer) &&
1018  buffer->PrepareChildren() &&
1019  buffer->ReadWriteChild(&list);
1020 }
1021 
1022 uint32_t Edit::ComputeSizeInternal() {
1023  // Edit box is optional. Skip it if it is empty.
1024  if (list.edits.empty())
1025  return 0;
1026  return HeaderSize() + list.ComputeSize();
1027 }
1028 
1029 HandlerReference::HandlerReference() : handler_type(FOURCC_NULL) {}
1030 HandlerReference::~HandlerReference() {}
1031 FourCC HandlerReference::BoxType() const { return FOURCC_hdlr; }
1032 
1033 bool HandlerReference::ReadWriteInternal(BoxBuffer* buffer) {
1034  std::vector<uint8_t> handler_name;
1035  if (!buffer->Reading()) {
1036  switch (handler_type) {
1037  case FOURCC_vide:
1038  handler_name.assign(kVideoHandlerName,
1039  kVideoHandlerName + arraysize(kVideoHandlerName));
1040  break;
1041  case FOURCC_soun:
1042  handler_name.assign(kAudioHandlerName,
1043  kAudioHandlerName + arraysize(kAudioHandlerName));
1044  break;
1045  case FOURCC_text:
1046  handler_name.assign(kTextHandlerName,
1047  kTextHandlerName + arraysize(kTextHandlerName));
1048  break;
1049  case FOURCC_ID32:
1050  break;
1051  default:
1052  NOTIMPLEMENTED();
1053  return false;
1054  }
1055  }
1056  RCHECK(ReadWriteHeaderInternal(buffer) &&
1057  buffer->IgnoreBytes(4) && // predefined.
1058  buffer->ReadWriteFourCC(&handler_type));
1059  if (!buffer->Reading()) {
1060  RCHECK(buffer->IgnoreBytes(12) && // reserved.
1061  buffer->ReadWriteVector(&handler_name, handler_name.size()));
1062  }
1063  return true;
1064 }
1065 
1066 uint32_t HandlerReference::ComputeSizeInternal() {
1067  uint32_t box_size = HeaderSize() + kFourCCSize + 16; // 16 bytes Reserved
1068  switch (handler_type) {
1069  case FOURCC_vide:
1070  box_size += sizeof(kVideoHandlerName);
1071  break;
1072  case FOURCC_soun:
1073  box_size += sizeof(kAudioHandlerName);
1074  break;
1075  case FOURCC_text:
1076  box_size += sizeof(kTextHandlerName);
1077  break;
1078  case FOURCC_ID32:
1079  break;
1080  default:
1081  NOTIMPLEMENTED();
1082  }
1083  return box_size;
1084 }
1085 
1086 bool Language::ReadWrite(BoxBuffer* buffer) {
1087  if (buffer->Reading()) {
1088  // Read language codes into temp first then use BitReader to read the
1089  // values. ISO-639-2/T language code: unsigned int(5)[3] language (2 bytes).
1090  std::vector<uint8_t> temp;
1091  RCHECK(buffer->ReadWriteVector(&temp, 2));
1092 
1093  BitReader bit_reader(&temp[0], 2);
1094  bit_reader.SkipBits(1);
1095  char language[3];
1096  for (int i = 0; i < 3; ++i) {
1097  CHECK(bit_reader.ReadBits(5, &language[i]));
1098  language[i] += 0x60;
1099  }
1100  code.assign(language, 3);
1101  } else {
1102  // Set up default language if it is not set.
1103  const char kUndefinedLanguage[] = "und";
1104  if (code.empty())
1105  code = kUndefinedLanguage;
1106  DCHECK_EQ(code.size(), 3u);
1107 
1108  // Lang format: bit(1) pad, unsigned int(5)[3] language.
1109  uint16_t lang = 0;
1110  for (int i = 0; i < 3; ++i)
1111  lang |= (code[i] - 0x60) << ((2 - i) * 5);
1112  RCHECK(buffer->ReadWriteUInt16(&lang));
1113  }
1114  return true;
1115 }
1116 
1117 uint32_t Language::ComputeSize() const {
1118  // ISO-639-2/T language code: unsigned int(5)[3] language (2 bytes).
1119  return 2;
1120 }
1121 
1122 bool PrivFrame::ReadWrite(BoxBuffer* buffer) {
1123  FourCC fourcc = FOURCC_PRIV;
1124  RCHECK(buffer->ReadWriteFourCC(&fourcc));
1125  if (fourcc != FOURCC_PRIV) {
1126  VLOG(1) << "Skip unrecognized id3 frame during read: "
1127  << FourCCToString(fourcc);
1128  return true;
1129  }
1130 
1131  uint32_t frame_size = owner.size() + 1 + value.size();
1132  // size should be encoded as synchsafe integer, which is not support here.
1133  // We don't expect frame_size to be larger than 0x7F. Synchsafe integers less
1134  // than 0x7F is encoded in the same way as normal integer.
1135  DCHECK_LT(frame_size, 0x7Fu);
1136  uint16_t flags = 0;
1137  RCHECK(buffer->ReadWriteUInt32(&frame_size) &&
1138  buffer->ReadWriteUInt16(&flags));
1139 
1140  if (buffer->Reading()) {
1141  std::string str;
1142  RCHECK(buffer->ReadWriteString(&str, frame_size));
1143  // |owner| is null terminated.
1144  size_t pos = str.find('\0');
1145  RCHECK(pos < str.size());
1146  owner = str.substr(0, pos);
1147  value = str.substr(pos + 1);
1148  } else {
1149  uint8_t byte = 0; // Null terminating byte between owner and value.
1150  RCHECK(buffer->ReadWriteString(&owner, owner.size()) &&
1151  buffer->ReadWriteUInt8(&byte) &&
1152  buffer->ReadWriteString(&value, value.size()));
1153  }
1154  return true;
1155 }
1156 
1157 uint32_t PrivFrame::ComputeSize() const {
1158  if (owner.empty() && value.empty())
1159  return 0;
1160  const uint32_t kFourCCSize = 4;
1161  return kFourCCSize + sizeof(uint32_t) + sizeof(uint16_t) + owner.size() + 1 +
1162  value.size();
1163 }
1164 
1165 ID3v2::ID3v2() {}
1166 ID3v2::~ID3v2() {}
1167 
1168 FourCC ID3v2::BoxType() const { return FOURCC_ID32; }
1169 
1170 bool ID3v2::ReadWriteInternal(BoxBuffer* buffer) {
1171  RCHECK(ReadWriteHeaderInternal(buffer) &&
1172  language.ReadWrite(buffer));
1173 
1174  // Read/Write ID3v2 header
1175  std::string id3v2_identifier = kID3v2Identifier;
1176  uint16_t version = kID3v2Version;
1177  // We only support PrivateFrame in ID3.
1178  uint32_t data_size = private_frame.ComputeSize();
1179  // size should be encoded as synchsafe integer, which is not support here.
1180  // We don't expect data_size to be larger than 0x7F. Synchsafe integers less
1181  // than 0x7F is encoded in the same way as normal integer.
1182  DCHECK_LT(data_size, 0x7Fu);
1183  uint8_t flags = 0;
1184  RCHECK(buffer->ReadWriteString(&id3v2_identifier, id3v2_identifier.size()) &&
1185  buffer->ReadWriteUInt16(&version) &&
1186  buffer->ReadWriteUInt8(&flags) &&
1187  buffer->ReadWriteUInt32(&data_size));
1188 
1189  RCHECK(private_frame.ReadWrite(buffer));
1190  return true;
1191 }
1192 
1193 uint32_t ID3v2::ComputeSizeInternal() {
1194  uint32_t private_frame_size = private_frame.ComputeSize();
1195  // Skip ID3v2 box generation if there is no private frame.
1196  return private_frame_size == 0 ? 0 : HeaderSize() + language.ComputeSize() +
1197  kID3v2HeaderSize +
1198  private_frame_size;
1199 }
1200 
1201 Metadata::Metadata() {}
1202 Metadata::~Metadata() {}
1203 
1204 FourCC Metadata::BoxType() const {
1205  return FOURCC_meta;
1206 }
1207 
1208 bool Metadata::ReadWriteInternal(BoxBuffer* buffer) {
1209  RCHECK(ReadWriteHeaderInternal(buffer) &&
1210  buffer->PrepareChildren() &&
1211  buffer->ReadWriteChild(&handler) &&
1212  buffer->TryReadWriteChild(&id3v2));
1213  return true;
1214 }
1215 
1216 uint32_t Metadata::ComputeSizeInternal() {
1217  uint32_t id3v2_size = id3v2.ComputeSize();
1218  // Skip metadata box generation if there is no metadata box.
1219  return id3v2_size == 0 ? 0
1220  : HeaderSize() + handler.ComputeSize() + id3v2_size;
1221 }
1222 
1223 CodecConfigurationRecord::CodecConfigurationRecord() : box_type(FOURCC_NULL) {}
1224 CodecConfigurationRecord::~CodecConfigurationRecord() {}
1226  // CodecConfigurationRecord should be parsed according to format recovered in
1227  // VideoSampleEntry. |box_type| is determined dynamically there.
1228  return box_type;
1229 }
1230 
1231 bool CodecConfigurationRecord::ReadWriteInternal(BoxBuffer* buffer) {
1232  RCHECK(ReadWriteHeaderInternal(buffer));
1233  if (buffer->Reading()) {
1234  RCHECK(buffer->ReadWriteVector(&data, buffer->BytesLeft()));
1235  } else {
1236  RCHECK(buffer->ReadWriteVector(&data, data.size()));
1237  }
1238  return true;
1239 }
1240 
1241 uint32_t CodecConfigurationRecord::ComputeSizeInternal() {
1242  if (data.empty())
1243  return 0;
1244  return HeaderSize() + data.size();
1245 }
1246 
1247 PixelAspectRatio::PixelAspectRatio() : h_spacing(0), v_spacing(0) {}
1248 PixelAspectRatio::~PixelAspectRatio() {}
1249 FourCC PixelAspectRatio::BoxType() const { return FOURCC_pasp; }
1250 
1251 bool PixelAspectRatio::ReadWriteInternal(BoxBuffer* buffer) {
1252  RCHECK(ReadWriteHeaderInternal(buffer) &&
1253  buffer->ReadWriteUInt32(&h_spacing) &&
1254  buffer->ReadWriteUInt32(&v_spacing));
1255  return true;
1256 }
1257 
1258 uint32_t PixelAspectRatio::ComputeSizeInternal() {
1259  // This box is optional. Skip it if it is not initialized.
1260  if (h_spacing == 0 && v_spacing == 0)
1261  return 0;
1262  // Both values must be positive.
1263  DCHECK(h_spacing != 0 && v_spacing != 0);
1264  return HeaderSize() + sizeof(h_spacing) + sizeof(v_spacing);
1265 }
1266 
1267 VideoSampleEntry::VideoSampleEntry()
1268  : format(FOURCC_NULL), data_reference_index(1), width(0), height(0) {}
1269 
1270 VideoSampleEntry::~VideoSampleEntry() {}
1272  if (format == FOURCC_NULL) {
1273  LOG(ERROR) << "VideoSampleEntry should be parsed according to the "
1274  << "handler type recovered in its Media ancestor.";
1275  }
1276  return format;
1277 }
1278 
1279 bool VideoSampleEntry::ReadWriteInternal(BoxBuffer* buffer) {
1280  std::vector<uint8_t> compressor_name;
1281  if (buffer->Reading()) {
1282  DCHECK(buffer->reader());
1283  format = buffer->reader()->type();
1284  } else {
1285  RCHECK(ReadWriteHeaderInternal(buffer));
1286 
1287  const FourCC actual_format = GetActualFormat();
1288  switch (actual_format) {
1289  case FOURCC_avc1:
1290  compressor_name.assign(
1291  kAvcCompressorName,
1292  kAvcCompressorName + arraysize(kAvcCompressorName));
1293  break;
1294  case FOURCC_hev1:
1295  case FOURCC_hvc1:
1296  compressor_name.assign(
1297  kHevcCompressorName,
1298  kHevcCompressorName + arraysize(kHevcCompressorName));
1299  break;
1300  case FOURCC_vp08:
1301  case FOURCC_vp09:
1302  case FOURCC_vp10:
1303  compressor_name.assign(
1304  kVpcCompressorName,
1305  kVpcCompressorName + arraysize(kVpcCompressorName));
1306  break;
1307  default:
1308  LOG(ERROR) << FourCCToString(actual_format) << " is not supported.";
1309  return false;
1310  }
1311  compressor_name.resize(kCompressorNameSize);
1312  }
1313 
1314  uint32_t video_resolution = kVideoResolution;
1315  uint16_t video_frame_count = kVideoFrameCount;
1316  uint16_t video_depth = kVideoDepth;
1317  int16_t predefined = -1;
1318  RCHECK(buffer->IgnoreBytes(6) && // reserved.
1319  buffer->ReadWriteUInt16(&data_reference_index) &&
1320  buffer->IgnoreBytes(16) && // predefined 0.
1321  buffer->ReadWriteUInt16(&width) &&
1322  buffer->ReadWriteUInt16(&height) &&
1323  buffer->ReadWriteUInt32(&video_resolution) &&
1324  buffer->ReadWriteUInt32(&video_resolution) &&
1325  buffer->IgnoreBytes(4) && // reserved.
1326  buffer->ReadWriteUInt16(&video_frame_count) &&
1327  buffer->ReadWriteVector(&compressor_name, kCompressorNameSize) &&
1328  buffer->ReadWriteUInt16(&video_depth) &&
1329  buffer->ReadWriteInt16(&predefined));
1330 
1331  RCHECK(buffer->PrepareChildren());
1332 
1333  if (format == FOURCC_encv)
1334  RCHECK(buffer->ReadWriteChild(&sinf));
1335 
1336  const FourCC actual_format = GetActualFormat();
1337  switch (actual_format) {
1338  case FOURCC_avc1:
1339  codec_config_record.box_type = FOURCC_avcC;
1340  break;
1341  case FOURCC_hev1:
1342  case FOURCC_hvc1:
1343  codec_config_record.box_type = FOURCC_hvcC;
1344  break;
1345  case FOURCC_vp08:
1346  case FOURCC_vp09:
1347  case FOURCC_vp10:
1348  codec_config_record.box_type = FOURCC_vpcC;
1349  break;
1350  default:
1351  LOG(ERROR) << FourCCToString(actual_format) << " is not supported.";
1352  return false;
1353  }
1354  RCHECK(buffer->ReadWriteChild(&codec_config_record));
1355  RCHECK(buffer->TryReadWriteChild(&pixel_aspect));
1356  return true;
1357 }
1358 
1359 uint32_t VideoSampleEntry::ComputeSizeInternal() {
1360  return HeaderSize() + sizeof(data_reference_index) + sizeof(width) +
1361  sizeof(height) + sizeof(kVideoResolution) * 2 +
1362  sizeof(kVideoFrameCount) + sizeof(kVideoDepth) +
1363  pixel_aspect.ComputeSize() + sinf.ComputeSize() +
1364  codec_config_record.ComputeSize() + kCompressorNameSize + 6 + 4 + 16 +
1365  2; // 6 + 4 bytes reserved, 16 + 2 bytes predefined.
1366 }
1367 
1368 ElementaryStreamDescriptor::ElementaryStreamDescriptor() {}
1369 ElementaryStreamDescriptor::~ElementaryStreamDescriptor() {}
1370 FourCC ElementaryStreamDescriptor::BoxType() const { return FOURCC_esds; }
1371 
1372 bool ElementaryStreamDescriptor::ReadWriteInternal(BoxBuffer* buffer) {
1373  RCHECK(ReadWriteHeaderInternal(buffer));
1374  if (buffer->Reading()) {
1375  std::vector<uint8_t> data;
1376  RCHECK(buffer->ReadWriteVector(&data, buffer->BytesLeft()));
1377  RCHECK(es_descriptor.Parse(data));
1378  if (es_descriptor.IsAAC()) {
1379  RCHECK(aac_audio_specific_config.Parse(
1380  es_descriptor.decoder_specific_info()));
1381  }
1382  } else {
1383  DCHECK(buffer->writer());
1384  es_descriptor.Write(buffer->writer());
1385  }
1386  return true;
1387 }
1388 
1389 uint32_t ElementaryStreamDescriptor::ComputeSizeInternal() {
1390  // This box is optional. Skip it if not initialized.
1391  if (es_descriptor.object_type() == kForbidden)
1392  return 0;
1393  return HeaderSize() + es_descriptor.ComputeSize();
1394 }
1395 
1396 DTSSpecific::DTSSpecific()
1397  : sampling_frequency(0),
1398  max_bitrate(0),
1399  avg_bitrate(0),
1400  pcm_sample_depth(0) {}
1401 DTSSpecific::~DTSSpecific() {}
1402 FourCC DTSSpecific::BoxType() const { return FOURCC_ddts; }
1403 
1404 bool DTSSpecific::ReadWriteInternal(BoxBuffer* buffer) {
1405  RCHECK(ReadWriteHeaderInternal(buffer) &&
1406  buffer->ReadWriteUInt32(&sampling_frequency) &&
1407  buffer->ReadWriteUInt32(&max_bitrate) &&
1408  buffer->ReadWriteUInt32(&avg_bitrate) &&
1409  buffer->ReadWriteUInt8(&pcm_sample_depth));
1410 
1411  if (buffer->Reading()) {
1412  RCHECK(buffer->ReadWriteVector(&extra_data, buffer->BytesLeft()));
1413  } else {
1414  if (extra_data.empty()) {
1415  extra_data.assign(kDdtsExtraData,
1416  kDdtsExtraData + sizeof(kDdtsExtraData));
1417  }
1418  RCHECK(buffer->ReadWriteVector(&extra_data, extra_data.size()));
1419  }
1420  return true;
1421 }
1422 
1423 uint32_t DTSSpecific::ComputeSizeInternal() {
1424  // This box is optional. Skip it if not initialized.
1425  if (sampling_frequency == 0)
1426  return 0;
1427  return HeaderSize() + sizeof(sampling_frequency) + sizeof(max_bitrate) +
1428  sizeof(avg_bitrate) + sizeof(pcm_sample_depth) +
1429  sizeof(kDdtsExtraData);
1430 }
1431 
1432 AC3Specific::AC3Specific() {}
1433 AC3Specific::~AC3Specific() {}
1434 
1435 FourCC AC3Specific::BoxType() const { return FOURCC_dac3; }
1436 
1437 bool AC3Specific::ReadWriteInternal(BoxBuffer* buffer) {
1438  RCHECK(ReadWriteHeaderInternal(buffer) &&
1439  buffer->ReadWriteVector(
1440  &data, buffer->Reading() ? buffer->BytesLeft() : data.size()));
1441  return true;
1442 }
1443 
1444 uint32_t AC3Specific::ComputeSizeInternal() {
1445  // This box is optional. Skip it if not initialized.
1446  if (data.empty())
1447  return 0;
1448  return HeaderSize() + data.size();
1449 }
1450 
1451 EC3Specific::EC3Specific() {}
1452 EC3Specific::~EC3Specific() {}
1453 
1454 FourCC EC3Specific::BoxType() const { return FOURCC_dec3; }
1455 
1456 bool EC3Specific::ReadWriteInternal(BoxBuffer* buffer) {
1457  RCHECK(ReadWriteHeaderInternal(buffer));
1458  uint32_t size = buffer->Reading() ? buffer->BytesLeft() : data.size();
1459  RCHECK(buffer->ReadWriteVector(&data, size));
1460  return true;
1461 }
1462 
1463 uint32_t EC3Specific::ComputeSizeInternal() {
1464  // This box is optional. Skip it if not initialized.
1465  if (data.empty())
1466  return 0;
1467  return HeaderSize() + data.size();
1468 }
1469 
1470 AudioSampleEntry::AudioSampleEntry()
1471  : format(FOURCC_NULL),
1472  data_reference_index(1),
1473  channelcount(2),
1474  samplesize(16),
1475  samplerate(0) {}
1476 
1477 AudioSampleEntry::~AudioSampleEntry() {}
1478 
1480  if (format == FOURCC_NULL) {
1481  LOG(ERROR) << "AudioSampleEntry should be parsed according to the "
1482  << "handler type recovered in its Media ancestor.";
1483  }
1484  return format;
1485 }
1486 
1487 bool AudioSampleEntry::ReadWriteInternal(BoxBuffer* buffer) {
1488  if (buffer->Reading()) {
1489  DCHECK(buffer->reader());
1490  format = buffer->reader()->type();
1491  } else {
1492  RCHECK(ReadWriteHeaderInternal(buffer));
1493  }
1494 
1495  // Convert from integer to 16.16 fixed point for writing.
1496  samplerate <<= 16;
1497  RCHECK(buffer->IgnoreBytes(6) && // reserved.
1498  buffer->ReadWriteUInt16(&data_reference_index) &&
1499  buffer->IgnoreBytes(8) && // reserved.
1500  buffer->ReadWriteUInt16(&channelcount) &&
1501  buffer->ReadWriteUInt16(&samplesize) &&
1502  buffer->IgnoreBytes(4) && // predefined.
1503  buffer->ReadWriteUInt32(&samplerate));
1504  // Convert from 16.16 fixed point to integer.
1505  samplerate >>= 16;
1506 
1507  RCHECK(buffer->PrepareChildren());
1508  if (format == FOURCC_enca)
1509  RCHECK(buffer->ReadWriteChild(&sinf));
1510 
1511  RCHECK(buffer->TryReadWriteChild(&esds));
1512  RCHECK(buffer->TryReadWriteChild(&ddts));
1513  RCHECK(buffer->TryReadWriteChild(&dac3));
1514  RCHECK(buffer->TryReadWriteChild(&dec3));
1515  return true;
1516 }
1517 
1518 uint32_t AudioSampleEntry::ComputeSizeInternal() {
1519  return HeaderSize() + sizeof(data_reference_index) + sizeof(channelcount) +
1520  sizeof(samplesize) + sizeof(samplerate) + sinf.ComputeSize() +
1521  esds.ComputeSize() + ddts.ComputeSize() + dac3.ComputeSize() +
1522  dec3.ComputeSize() +
1523  6 + 8 + // 6 + 8 bytes reserved.
1524  4; // 4 bytes predefined.
1525 }
1526 
1527 WebVTTConfigurationBox::WebVTTConfigurationBox() {}
1528 WebVTTConfigurationBox::~WebVTTConfigurationBox() {}
1529 
1531  return FOURCC_vttC;
1532 }
1533 
1534 bool WebVTTConfigurationBox::ReadWriteInternal(BoxBuffer* buffer) {
1535  RCHECK(ReadWriteHeaderInternal(buffer));
1536  return buffer->ReadWriteString(
1537  &config,
1538  buffer->Reading() ? buffer->BytesLeft() : config.size());
1539 }
1540 
1541 uint32_t WebVTTConfigurationBox::ComputeSizeInternal() {
1542  return HeaderSize() + config.size();
1543 }
1544 
1545 WebVTTSourceLabelBox::WebVTTSourceLabelBox() {}
1546 WebVTTSourceLabelBox::~WebVTTSourceLabelBox() {}
1547 
1549  return FOURCC_vlab;
1550 }
1551 
1552 bool WebVTTSourceLabelBox::ReadWriteInternal(BoxBuffer* buffer) {
1553  RCHECK(ReadWriteHeaderInternal(buffer));
1554  return buffer->ReadWriteString(&source_label, buffer->Reading()
1555  ? buffer->BytesLeft()
1556  : source_label.size());
1557 }
1558 
1559 uint32_t WebVTTSourceLabelBox::ComputeSizeInternal() {
1560  if (source_label.empty())
1561  return 0;
1562  return HeaderSize() + source_label.size();
1563 }
1564 
1565 TextSampleEntry::TextSampleEntry() : format(FOURCC_NULL) {}
1566 TextSampleEntry::~TextSampleEntry() {}
1567 
1569  if (format == FOURCC_NULL) {
1570  LOG(ERROR) << "TextSampleEntry should be parsed according to the "
1571  << "handler type recovered in its Media ancestor.";
1572  }
1573  return format;
1574 }
1575 
1576 bool TextSampleEntry::ReadWriteInternal(BoxBuffer* buffer) {
1577  if (buffer->Reading()) {
1578  DCHECK(buffer->reader());
1579  format = buffer->reader()->type();
1580  } else {
1581  RCHECK(ReadWriteHeaderInternal(buffer));
1582  }
1583  RCHECK(buffer->IgnoreBytes(6) && // reserved for SampleEntry.
1584  buffer->ReadWriteUInt16(&data_reference_index));
1585 
1586  if (format == FOURCC_wvtt) {
1587  // TODO(rkuroiwa): Handle the optional MPEG4BitRateBox.
1588  RCHECK(buffer->PrepareChildren() &&
1589  buffer->ReadWriteChild(&config) &&
1590  buffer->ReadWriteChild(&label));
1591  }
1592  return true;
1593 }
1594 
1595 uint32_t TextSampleEntry::ComputeSizeInternal() {
1596  // 6 for the (anonymous) reserved bytes for SampleEntry class.
1597  return HeaderSize() + 6 + sizeof(data_reference_index) +
1598  config.ComputeSize() + label.ComputeSize();
1599 }
1600 
1601 MediaHeader::MediaHeader()
1602  : creation_time(0), modification_time(0), timescale(0), duration(0) {}
1603 MediaHeader::~MediaHeader() {}
1604 FourCC MediaHeader::BoxType() const { return FOURCC_mdhd; }
1605 
1606 bool MediaHeader::ReadWriteInternal(BoxBuffer* buffer) {
1607  RCHECK(ReadWriteHeaderInternal(buffer));
1608 
1609  uint8_t num_bytes = (version == 1) ? sizeof(uint64_t) : sizeof(uint32_t);
1610  RCHECK(buffer->ReadWriteUInt64NBytes(&creation_time, num_bytes) &&
1611  buffer->ReadWriteUInt64NBytes(&modification_time, num_bytes) &&
1612  buffer->ReadWriteUInt32(&timescale) &&
1613  buffer->ReadWriteUInt64NBytes(&duration, num_bytes) &&
1614  language.ReadWrite(buffer) &&
1615  buffer->IgnoreBytes(2)); // predefined.
1616  return true;
1617 }
1618 
1619 uint32_t MediaHeader::ComputeSizeInternal() {
1620  version = IsFitIn32Bits(creation_time, modification_time, duration) ? 0 : 1;
1621  return HeaderSize() + sizeof(timescale) +
1622  sizeof(uint32_t) * (1 + version) * 3 + language.ComputeSize() +
1623  2; // 2 bytes predefined.
1624 }
1625 
1626 VideoMediaHeader::VideoMediaHeader()
1627  : graphicsmode(0), opcolor_red(0), opcolor_green(0), opcolor_blue(0) {
1628  const uint32_t kVideoMediaHeaderFlags = 1;
1629  flags = kVideoMediaHeaderFlags;
1630 }
1631 VideoMediaHeader::~VideoMediaHeader() {}
1632 FourCC VideoMediaHeader::BoxType() const { return FOURCC_vmhd; }
1633 bool VideoMediaHeader::ReadWriteInternal(BoxBuffer* buffer) {
1634  RCHECK(ReadWriteHeaderInternal(buffer) &&
1635  buffer->ReadWriteUInt16(&graphicsmode) &&
1636  buffer->ReadWriteUInt16(&opcolor_red) &&
1637  buffer->ReadWriteUInt16(&opcolor_green) &&
1638  buffer->ReadWriteUInt16(&opcolor_blue));
1639  return true;
1640 }
1641 
1642 uint32_t VideoMediaHeader::ComputeSizeInternal() {
1643  return HeaderSize() + sizeof(graphicsmode) + sizeof(opcolor_red) +
1644  sizeof(opcolor_green) + sizeof(opcolor_blue);
1645 }
1646 
1647 SoundMediaHeader::SoundMediaHeader() : balance(0) {}
1648 SoundMediaHeader::~SoundMediaHeader() {}
1649 FourCC SoundMediaHeader::BoxType() const { return FOURCC_smhd; }
1650 bool SoundMediaHeader::ReadWriteInternal(BoxBuffer* buffer) {
1651  RCHECK(ReadWriteHeaderInternal(buffer) &&
1652  buffer->ReadWriteUInt16(&balance) &&
1653  buffer->IgnoreBytes(2)); // reserved.
1654  return true;
1655 }
1656 
1657 uint32_t SoundMediaHeader::ComputeSizeInternal() {
1658  return HeaderSize() + sizeof(balance) + sizeof(uint16_t);
1659 }
1660 
1661 SubtitleMediaHeader::SubtitleMediaHeader() {}
1662 SubtitleMediaHeader::~SubtitleMediaHeader() {}
1663 
1664 FourCC SubtitleMediaHeader::BoxType() const { return FOURCC_sthd; }
1665 
1666 bool SubtitleMediaHeader::ReadWriteInternal(BoxBuffer* buffer) {
1667  return ReadWriteHeaderInternal(buffer);
1668 }
1669 
1670 uint32_t SubtitleMediaHeader::ComputeSizeInternal() {
1671  return HeaderSize();
1672 }
1673 
1674 DataEntryUrl::DataEntryUrl() {
1675  const uint32_t kDataEntryUrlFlags = 1;
1676  flags = kDataEntryUrlFlags;
1677 }
1678 DataEntryUrl::~DataEntryUrl() {}
1679 FourCC DataEntryUrl::BoxType() const { return FOURCC_url; }
1680 bool DataEntryUrl::ReadWriteInternal(BoxBuffer* buffer) {
1681  RCHECK(ReadWriteHeaderInternal(buffer));
1682  if (buffer->Reading()) {
1683  RCHECK(buffer->ReadWriteVector(&location, buffer->BytesLeft()));
1684  } else {
1685  RCHECK(buffer->ReadWriteVector(&location, location.size()));
1686  }
1687  return true;
1688 }
1689 
1690 uint32_t DataEntryUrl::ComputeSizeInternal() {
1691  return HeaderSize() + location.size();
1692 }
1693 
1694 DataReference::DataReference() {
1695  // Default 1 entry.
1696  data_entry.resize(1);
1697 }
1698 DataReference::~DataReference() {}
1699 FourCC DataReference::BoxType() const { return FOURCC_dref; }
1700 bool DataReference::ReadWriteInternal(BoxBuffer* buffer) {
1701  uint32_t entry_count = data_entry.size();
1702  RCHECK(ReadWriteHeaderInternal(buffer) &&
1703  buffer->ReadWriteUInt32(&entry_count));
1704  data_entry.resize(entry_count);
1705  RCHECK(buffer->PrepareChildren());
1706  for (uint32_t i = 0; i < entry_count; ++i)
1707  RCHECK(buffer->ReadWriteChild(&data_entry[i]));
1708  return true;
1709 }
1710 
1711 uint32_t DataReference::ComputeSizeInternal() {
1712  uint32_t count = data_entry.size();
1713  uint32_t box_size = HeaderSize() + sizeof(count);
1714  for (uint32_t i = 0; i < count; ++i)
1715  box_size += data_entry[i].ComputeSize();
1716  return box_size;
1717 }
1718 
1719 DataInformation::DataInformation() {}
1720 DataInformation::~DataInformation() {}
1721 FourCC DataInformation::BoxType() const { return FOURCC_dinf; }
1722 
1723 bool DataInformation::ReadWriteInternal(BoxBuffer* buffer) {
1724  return ReadWriteHeaderInternal(buffer) &&
1725  buffer->PrepareChildren() &&
1726  buffer->ReadWriteChild(&dref);
1727 }
1728 
1729 uint32_t DataInformation::ComputeSizeInternal() {
1730  return HeaderSize() + dref.ComputeSize();
1731 }
1732 
1733 MediaInformation::MediaInformation() {}
1734 MediaInformation::~MediaInformation() {}
1735 FourCC MediaInformation::BoxType() const { return FOURCC_minf; }
1736 
1737 bool MediaInformation::ReadWriteInternal(BoxBuffer* buffer) {
1738  RCHECK(ReadWriteHeaderInternal(buffer) &&
1739  buffer->PrepareChildren() &&
1740  buffer->ReadWriteChild(&dinf) &&
1741  buffer->ReadWriteChild(&sample_table));
1742  switch (sample_table.description.type) {
1743  case kVideo:
1744  RCHECK(buffer->ReadWriteChild(&vmhd));
1745  break;
1746  case kAudio:
1747  RCHECK(buffer->ReadWriteChild(&smhd));
1748  break;
1749  case kText:
1750  RCHECK(buffer->TryReadWriteChild(&sthd));
1751  break;
1752  default:
1753  NOTIMPLEMENTED();
1754  }
1755  // Hint is not supported for now.
1756  return true;
1757 }
1758 
1759 uint32_t MediaInformation::ComputeSizeInternal() {
1760  uint32_t box_size =
1761  HeaderSize() + dinf.ComputeSize() + sample_table.ComputeSize();
1762  switch (sample_table.description.type) {
1763  case kVideo:
1764  box_size += vmhd.ComputeSize();
1765  break;
1766  case kAudio:
1767  box_size += smhd.ComputeSize();
1768  break;
1769  case kText:
1770  box_size += sthd.ComputeSize();
1771  break;
1772  default:
1773  NOTIMPLEMENTED();
1774  }
1775  return box_size;
1776 }
1777 
1778 Media::Media() {}
1779 Media::~Media() {}
1780 FourCC Media::BoxType() const { return FOURCC_mdia; }
1781 
1782 bool Media::ReadWriteInternal(BoxBuffer* buffer) {
1783  RCHECK(ReadWriteHeaderInternal(buffer) &&
1784  buffer->PrepareChildren() &&
1785  buffer->ReadWriteChild(&header));
1786  if (buffer->Reading()) {
1787  RCHECK(buffer->ReadWriteChild(&handler));
1788  // Maddeningly, the HandlerReference box specifies how to parse the
1789  // SampleDescription box, making the latter the only box (of those that we
1790  // support) which cannot be parsed correctly on its own (or even with
1791  // information from its strict ancestor tree). We thus copy the handler type
1792  // to the sample description box *before* parsing it to provide this
1793  // information while parsing.
1794  information.sample_table.description.type =
1795  FourCCToTrackType(handler.handler_type);
1796  } else {
1797  handler.handler_type =
1798  TrackTypeToFourCC(information.sample_table.description.type);
1799  RCHECK(handler.handler_type != FOURCC_NULL);
1800  RCHECK(buffer->ReadWriteChild(&handler));
1801  }
1802  RCHECK(buffer->ReadWriteChild(&information));
1803  return true;
1804 }
1805 
1806 uint32_t Media::ComputeSizeInternal() {
1807  handler.handler_type =
1808  TrackTypeToFourCC(information.sample_table.description.type);
1809  return HeaderSize() + header.ComputeSize() + handler.ComputeSize() +
1810  information.ComputeSize();
1811 }
1812 
1813 Track::Track() {}
1814 Track::~Track() {}
1815 FourCC Track::BoxType() const { return FOURCC_trak; }
1816 
1817 bool Track::ReadWriteInternal(BoxBuffer* buffer) {
1818  RCHECK(ReadWriteHeaderInternal(buffer) &&
1819  buffer->PrepareChildren() &&
1820  buffer->ReadWriteChild(&header) &&
1821  buffer->ReadWriteChild(&media) &&
1822  buffer->TryReadWriteChild(&edit) &&
1823  buffer->TryReadWriteChild(&sample_encryption));
1824  return true;
1825 }
1826 
1827 uint32_t Track::ComputeSizeInternal() {
1828  return HeaderSize() + header.ComputeSize() + media.ComputeSize() +
1829  edit.ComputeSize();
1830 }
1831 
1832 MovieExtendsHeader::MovieExtendsHeader() : fragment_duration(0) {}
1833 MovieExtendsHeader::~MovieExtendsHeader() {}
1834 FourCC MovieExtendsHeader::BoxType() const { return FOURCC_mehd; }
1835 
1836 bool MovieExtendsHeader::ReadWriteInternal(BoxBuffer* buffer) {
1837  RCHECK(ReadWriteHeaderInternal(buffer));
1838  size_t num_bytes = (version == 1) ? sizeof(uint64_t) : sizeof(uint32_t);
1839  RCHECK(buffer->ReadWriteUInt64NBytes(&fragment_duration, num_bytes));
1840  return true;
1841 }
1842 
1843 uint32_t MovieExtendsHeader::ComputeSizeInternal() {
1844  // This box is optional. Skip it if it is not used.
1845  if (fragment_duration == 0)
1846  return 0;
1847  version = IsFitIn32Bits(fragment_duration) ? 0 : 1;
1848  return HeaderSize() + sizeof(uint32_t) * (1 + version);
1849 }
1850 
1851 TrackExtends::TrackExtends()
1852  : track_id(0),
1853  default_sample_description_index(0),
1854  default_sample_duration(0),
1855  default_sample_size(0),
1856  default_sample_flags(0) {}
1857 TrackExtends::~TrackExtends() {}
1858 FourCC TrackExtends::BoxType() const { return FOURCC_trex; }
1859 
1860 bool TrackExtends::ReadWriteInternal(BoxBuffer* buffer) {
1861  RCHECK(ReadWriteHeaderInternal(buffer) &&
1862  buffer->ReadWriteUInt32(&track_id) &&
1863  buffer->ReadWriteUInt32(&default_sample_description_index) &&
1864  buffer->ReadWriteUInt32(&default_sample_duration) &&
1865  buffer->ReadWriteUInt32(&default_sample_size) &&
1866  buffer->ReadWriteUInt32(&default_sample_flags));
1867  return true;
1868 }
1869 
1870 uint32_t TrackExtends::ComputeSizeInternal() {
1871  return HeaderSize() + sizeof(track_id) +
1872  sizeof(default_sample_description_index) +
1873  sizeof(default_sample_duration) + sizeof(default_sample_size) +
1874  sizeof(default_sample_flags);
1875 }
1876 
1877 MovieExtends::MovieExtends() {}
1878 MovieExtends::~MovieExtends() {}
1879 FourCC MovieExtends::BoxType() const { return FOURCC_mvex; }
1880 
1881 bool MovieExtends::ReadWriteInternal(BoxBuffer* buffer) {
1882  RCHECK(ReadWriteHeaderInternal(buffer) &&
1883  buffer->PrepareChildren() &&
1884  buffer->TryReadWriteChild(&header));
1885  if (buffer->Reading()) {
1886  DCHECK(buffer->reader());
1887  RCHECK(buffer->reader()->ReadChildren(&tracks));
1888  } else {
1889  for (uint32_t i = 0; i < tracks.size(); ++i)
1890  RCHECK(buffer->ReadWriteChild(&tracks[i]));
1891  }
1892  return true;
1893 }
1894 
1895 uint32_t MovieExtends::ComputeSizeInternal() {
1896  // This box is optional. Skip it if it does not contain any track.
1897  if (tracks.size() == 0)
1898  return 0;
1899  uint32_t box_size = HeaderSize() + header.ComputeSize();
1900  for (uint32_t i = 0; i < tracks.size(); ++i)
1901  box_size += tracks[i].ComputeSize();
1902  return box_size;
1903 }
1904 
1905 Movie::Movie() {}
1906 Movie::~Movie() {}
1907 FourCC Movie::BoxType() const { return FOURCC_moov; }
1908 
1909 bool Movie::ReadWriteInternal(BoxBuffer* buffer) {
1910  RCHECK(ReadWriteHeaderInternal(buffer) &&
1911  buffer->PrepareChildren() &&
1912  buffer->ReadWriteChild(&header) &&
1913  buffer->TryReadWriteChild(&metadata) &&
1914  buffer->TryReadWriteChild(&extends));
1915  if (buffer->Reading()) {
1916  BoxReader* reader = buffer->reader();
1917  DCHECK(reader);
1918  RCHECK(reader->ReadChildren(&tracks) &&
1919  reader->TryReadChildren(&pssh));
1920  } else {
1921  for (uint32_t i = 0; i < tracks.size(); ++i)
1922  RCHECK(buffer->ReadWriteChild(&tracks[i]));
1923  for (uint32_t i = 0; i < pssh.size(); ++i)
1924  RCHECK(buffer->ReadWriteChild(&pssh[i]));
1925  }
1926  return true;
1927 }
1928 
1929 uint32_t Movie::ComputeSizeInternal() {
1930  uint32_t box_size = HeaderSize() + header.ComputeSize() +
1931  metadata.ComputeSize() + extends.ComputeSize();
1932  for (uint32_t i = 0; i < tracks.size(); ++i)
1933  box_size += tracks[i].ComputeSize();
1934  for (uint32_t i = 0; i < pssh.size(); ++i)
1935  box_size += pssh[i].ComputeSize();
1936  return box_size;
1937 }
1938 
1939 TrackFragmentDecodeTime::TrackFragmentDecodeTime() : decode_time(0) {}
1940 TrackFragmentDecodeTime::~TrackFragmentDecodeTime() {}
1941 FourCC TrackFragmentDecodeTime::BoxType() const { return FOURCC_tfdt; }
1942 
1943 bool TrackFragmentDecodeTime::ReadWriteInternal(BoxBuffer* buffer) {
1944  RCHECK(ReadWriteHeaderInternal(buffer));
1945  size_t num_bytes = (version == 1) ? sizeof(uint64_t) : sizeof(uint32_t);
1946  RCHECK(buffer->ReadWriteUInt64NBytes(&decode_time, num_bytes));
1947  return true;
1948 }
1949 
1950 uint32_t TrackFragmentDecodeTime::ComputeSizeInternal() {
1951  version = IsFitIn32Bits(decode_time) ? 0 : 1;
1952  return HeaderSize() + sizeof(uint32_t) * (1 + version);
1953 }
1954 
1955 MovieFragmentHeader::MovieFragmentHeader() : sequence_number(0) {}
1956 MovieFragmentHeader::~MovieFragmentHeader() {}
1957 FourCC MovieFragmentHeader::BoxType() const { return FOURCC_mfhd; }
1958 
1959 bool MovieFragmentHeader::ReadWriteInternal(BoxBuffer* buffer) {
1960  return ReadWriteHeaderInternal(buffer) &&
1961  buffer->ReadWriteUInt32(&sequence_number);
1962 }
1963 
1964 uint32_t MovieFragmentHeader::ComputeSizeInternal() {
1965  return HeaderSize() + sizeof(sequence_number);
1966 }
1967 
1968 TrackFragmentHeader::TrackFragmentHeader()
1969  : track_id(0),
1970  sample_description_index(0),
1971  default_sample_duration(0),
1972  default_sample_size(0),
1973  default_sample_flags(0) {}
1974 
1975 TrackFragmentHeader::~TrackFragmentHeader() {}
1976 FourCC TrackFragmentHeader::BoxType() const { return FOURCC_tfhd; }
1977 
1978 bool TrackFragmentHeader::ReadWriteInternal(BoxBuffer* buffer) {
1979  RCHECK(ReadWriteHeaderInternal(buffer) &&
1980  buffer->ReadWriteUInt32(&track_id));
1981 
1982  if (flags & kBaseDataOffsetPresentMask) {
1983  // MSE requires 'default-base-is-moof' to be set and
1984  // 'base-data-offset-present' not to be set. We omit these checks as some
1985  // valid files in the wild don't follow these rules, though they use moof as
1986  // base.
1987  uint64_t base_data_offset;
1988  RCHECK(buffer->ReadWriteUInt64(&base_data_offset));
1989  DLOG(WARNING) << "base-data-offset-present is not expected. Assumes "
1990  "default-base-is-moof.";
1991  }
1992 
1993  if (flags & kSampleDescriptionIndexPresentMask) {
1994  RCHECK(buffer->ReadWriteUInt32(&sample_description_index));
1995  } else if (buffer->Reading()) {
1996  sample_description_index = 0;
1997  }
1998 
1999  if (flags & kDefaultSampleDurationPresentMask) {
2000  RCHECK(buffer->ReadWriteUInt32(&default_sample_duration));
2001  } else if (buffer->Reading()) {
2002  default_sample_duration = 0;
2003  }
2004 
2005  if (flags & kDefaultSampleSizePresentMask) {
2006  RCHECK(buffer->ReadWriteUInt32(&default_sample_size));
2007  } else if (buffer->Reading()) {
2008  default_sample_size = 0;
2009  }
2010 
2011  if (flags & kDefaultSampleFlagsPresentMask)
2012  RCHECK(buffer->ReadWriteUInt32(&default_sample_flags));
2013  return true;
2014 }
2015 
2016 uint32_t TrackFragmentHeader::ComputeSizeInternal() {
2017  uint32_t box_size = HeaderSize() + sizeof(track_id);
2018  if (flags & kSampleDescriptionIndexPresentMask)
2019  box_size += sizeof(sample_description_index);
2020  if (flags & kDefaultSampleDurationPresentMask)
2021  box_size += sizeof(default_sample_duration);
2022  if (flags & kDefaultSampleSizePresentMask)
2023  box_size += sizeof(default_sample_size);
2024  if (flags & kDefaultSampleFlagsPresentMask)
2025  box_size += sizeof(default_sample_flags);
2026  return box_size;
2027 }
2028 
2029 TrackFragmentRun::TrackFragmentRun() : sample_count(0), data_offset(0) {}
2030 TrackFragmentRun::~TrackFragmentRun() {}
2031 FourCC TrackFragmentRun::BoxType() const { return FOURCC_trun; }
2032 
2033 bool TrackFragmentRun::ReadWriteInternal(BoxBuffer* buffer) {
2034  if (!buffer->Reading()) {
2035  // Determine whether version 0 or version 1 should be used.
2036  // Use version 0 if possible, use version 1 if there is a negative
2037  // sample_offset value.
2038  version = 0;
2039  if (flags & kSampleCompTimeOffsetsPresentMask) {
2040  for (uint32_t i = 0; i < sample_count; ++i) {
2041  if (sample_composition_time_offsets[i] < 0) {
2042  version = 1;
2043  break;
2044  }
2045  }
2046  }
2047  }
2048 
2049  RCHECK(ReadWriteHeaderInternal(buffer) &&
2050  buffer->ReadWriteUInt32(&sample_count));
2051 
2052  bool data_offset_present = (flags & kDataOffsetPresentMask) != 0;
2053  bool first_sample_flags_present = (flags & kFirstSampleFlagsPresentMask) != 0;
2054  bool sample_duration_present = (flags & kSampleDurationPresentMask) != 0;
2055  bool sample_size_present = (flags & kSampleSizePresentMask) != 0;
2056  bool sample_flags_present = (flags & kSampleFlagsPresentMask) != 0;
2057  bool sample_composition_time_offsets_present =
2058  (flags & kSampleCompTimeOffsetsPresentMask) != 0;
2059 
2060  if (data_offset_present) {
2061  RCHECK(buffer->ReadWriteUInt32(&data_offset));
2062  } else {
2063  // NOTE: If the data-offset is not present, then the data for this run
2064  // starts immediately after the data of the previous run, or at the
2065  // base-data-offset defined by the track fragment header if this is the
2066  // first run in a track fragment. If the data-offset is present, it is
2067  // relative to the base-data-offset established in the track fragment
2068  // header.
2069  NOTIMPLEMENTED();
2070  }
2071 
2072  uint32_t first_sample_flags;
2073 
2074  if (buffer->Reading()) {
2075  if (first_sample_flags_present)
2076  RCHECK(buffer->ReadWriteUInt32(&first_sample_flags));
2077 
2078  if (sample_duration_present)
2079  sample_durations.resize(sample_count);
2080  if (sample_size_present)
2081  sample_sizes.resize(sample_count);
2082  if (sample_flags_present)
2083  sample_flags.resize(sample_count);
2084  if (sample_composition_time_offsets_present)
2085  sample_composition_time_offsets.resize(sample_count);
2086  } else {
2087  if (first_sample_flags_present) {
2088  first_sample_flags = sample_flags[0];
2089  DCHECK(sample_flags.size() == 1);
2090  RCHECK(buffer->ReadWriteUInt32(&first_sample_flags));
2091  }
2092 
2093  if (sample_duration_present)
2094  DCHECK(sample_durations.size() == sample_count);
2095  if (sample_size_present)
2096  DCHECK(sample_sizes.size() == sample_count);
2097  if (sample_flags_present)
2098  DCHECK(sample_flags.size() == sample_count);
2099  if (sample_composition_time_offsets_present)
2100  DCHECK(sample_composition_time_offsets.size() == sample_count);
2101  }
2102 
2103  for (uint32_t i = 0; i < sample_count; ++i) {
2104  if (sample_duration_present)
2105  RCHECK(buffer->ReadWriteUInt32(&sample_durations[i]));
2106  if (sample_size_present)
2107  RCHECK(buffer->ReadWriteUInt32(&sample_sizes[i]));
2108  if (sample_flags_present)
2109  RCHECK(buffer->ReadWriteUInt32(&sample_flags[i]));
2110 
2111  if (sample_composition_time_offsets_present) {
2112  if (version == 0) {
2113  uint32_t sample_offset = sample_composition_time_offsets[i];
2114  RCHECK(buffer->ReadWriteUInt32(&sample_offset));
2115  sample_composition_time_offsets[i] = sample_offset;
2116  } else {
2117  int32_t sample_offset = sample_composition_time_offsets[i];
2118  RCHECK(buffer->ReadWriteInt32(&sample_offset));
2119  sample_composition_time_offsets[i] = sample_offset;
2120  }
2121  }
2122  }
2123 
2124  if (buffer->Reading()) {
2125  if (first_sample_flags_present) {
2126  if (sample_flags.size() == 0) {
2127  sample_flags.push_back(first_sample_flags);
2128  } else {
2129  sample_flags[0] = first_sample_flags;
2130  }
2131  }
2132  }
2133  return true;
2134 }
2135 
2136 uint32_t TrackFragmentRun::ComputeSizeInternal() {
2137  uint32_t box_size = HeaderSize() + sizeof(sample_count);
2138  if (flags & kDataOffsetPresentMask)
2139  box_size += sizeof(data_offset);
2140  if (flags & kFirstSampleFlagsPresentMask)
2141  box_size += sizeof(uint32_t);
2142  uint32_t fields = (flags & kSampleDurationPresentMask ? 1 : 0) +
2143  (flags & kSampleSizePresentMask ? 1 : 0) +
2144  (flags & kSampleFlagsPresentMask ? 1 : 0) +
2145  (flags & kSampleCompTimeOffsetsPresentMask ? 1 : 0);
2146  box_size += fields * sizeof(uint32_t) * sample_count;
2147  return box_size;
2148 }
2149 
2150 SampleToGroup::SampleToGroup() : grouping_type(0), grouping_type_parameter(0) {}
2151 SampleToGroup::~SampleToGroup() {}
2152 FourCC SampleToGroup::BoxType() const { return FOURCC_sbgp; }
2153 
2154 bool SampleToGroup::ReadWriteInternal(BoxBuffer* buffer) {
2155  RCHECK(ReadWriteHeaderInternal(buffer) &&
2156  buffer->ReadWriteUInt32(&grouping_type));
2157  if (version == 1)
2158  RCHECK(buffer->ReadWriteUInt32(&grouping_type_parameter));
2159 
2160  if (grouping_type != FOURCC_seig) {
2161  DCHECK(buffer->Reading());
2162  DLOG(WARNING) << "Sample group "
2163  << FourCCToString(static_cast<FourCC>(grouping_type))
2164  << " is not supported.";
2165  return true;
2166  }
2167 
2168  uint32_t count = entries.size();
2169  RCHECK(buffer->ReadWriteUInt32(&count));
2170  entries.resize(count);
2171  for (uint32_t i = 0; i < count; ++i) {
2172  RCHECK(buffer->ReadWriteUInt32(&entries[i].sample_count) &&
2173  buffer->ReadWriteUInt32(&entries[i].group_description_index));
2174  }
2175  return true;
2176 }
2177 
2178 uint32_t SampleToGroup::ComputeSizeInternal() {
2179  // This box is optional. Skip it if it is not used.
2180  if (entries.empty())
2181  return 0;
2182  return HeaderSize() + sizeof(grouping_type) +
2183  (version == 1 ? sizeof(grouping_type_parameter) : 0) +
2184  sizeof(uint32_t) + entries.size() * sizeof(entries[0]);
2185 }
2186 
2187 CencSampleEncryptionInfoEntry::CencSampleEncryptionInfoEntry()
2188  : is_protected(0),
2189  per_sample_iv_size(0),
2190  crypt_byte_block(0),
2191  skip_byte_block(0) {}
2192 CencSampleEncryptionInfoEntry::~CencSampleEncryptionInfoEntry() {};
2193 
2194 SampleGroupDescription::SampleGroupDescription() : grouping_type(0) {}
2195 SampleGroupDescription::~SampleGroupDescription() {}
2196 FourCC SampleGroupDescription::BoxType() const { return FOURCC_sgpd; }
2197 
2198 bool SampleGroupDescription::ReadWriteInternal(BoxBuffer* buffer) {
2199  RCHECK(ReadWriteHeaderInternal(buffer) &&
2200  buffer->ReadWriteUInt32(&grouping_type));
2201 
2202  if (grouping_type != FOURCC_seig) {
2203  DCHECK(buffer->Reading());
2204  DLOG(WARNING) << "Sample group '" << grouping_type << "' is not supported.";
2205  return true;
2206  }
2207 
2208  const size_t kEntrySize = sizeof(uint32_t) + kCencKeyIdSize;
2209  uint32_t default_length = 0;
2210  if (version == 1) {
2211  if (buffer->Reading()) {
2212  RCHECK(buffer->ReadWriteUInt32(&default_length));
2213  RCHECK(default_length == 0 || default_length >= kEntrySize);
2214  } else {
2215  default_length = kEntrySize;
2216  RCHECK(buffer->ReadWriteUInt32(&default_length));
2217  }
2218  }
2219 
2220  uint32_t count = entries.size();
2221  RCHECK(buffer->ReadWriteUInt32(&count));
2222  entries.resize(count);
2223  for (uint32_t i = 0; i < count; ++i) {
2224  if (version == 1) {
2225  if (buffer->Reading() && default_length == 0) {
2226  uint32_t description_length = 0;
2227  RCHECK(buffer->ReadWriteUInt32(&description_length));
2228  RCHECK(description_length >= kEntrySize);
2229  }
2230  }
2231 
2232  if (!buffer->Reading()) {
2233  if (entries[i].key_id.size() != kCencKeyIdSize) {
2234  LOG(WARNING) << "CENC defines key id length of " << kCencKeyIdSize
2235  << " bytes; got " << entries[i].key_id.size()
2236  << ". Resized accordingly.";
2237  entries[i].key_id.resize(kCencKeyIdSize);
2238  }
2239  RCHECK(entries[i].crypt_byte_block < 16 &&
2240  entries[i].skip_byte_block < 16);
2241  }
2242 
2243  RCHECK(buffer->IgnoreBytes(1)); // reserved.
2244 
2245  uint8_t pattern =
2246  entries[i].crypt_byte_block << 4 | entries[i].skip_byte_block;
2247  RCHECK(buffer->ReadWriteUInt8(&pattern));
2248  entries[i].crypt_byte_block = pattern >> 4;
2249  entries[i].skip_byte_block = pattern & 0x0F;
2250 
2251  RCHECK(buffer->ReadWriteUInt8(&entries[i].is_protected) &&
2252  buffer->ReadWriteUInt8(&entries[i].per_sample_iv_size) &&
2253  buffer->ReadWriteVector(&entries[i].key_id, kCencKeyIdSize));
2254 
2255  if (entries[i].is_protected == 1) {
2256  if (entries[i].per_sample_iv_size == 0) { // For constant iv.
2257  uint8_t constant_iv_size = entries[i].constant_iv.size();
2258  RCHECK(buffer->ReadWriteUInt8(&constant_iv_size));
2259  RCHECK(constant_iv_size == 8 || constant_iv_size == 16);
2260  RCHECK(
2261  buffer->ReadWriteVector(&entries[i].constant_iv, constant_iv_size));
2262  } else {
2263  RCHECK(entries[i].per_sample_iv_size == 8 ||
2264  entries[i].per_sample_iv_size == 16);
2265  RCHECK(entries[i].constant_iv.empty());
2266  }
2267  } else {
2268  // Expect |is_protected| to be 0, i.e. not protected. Other values of
2269  // |is_protected| is not supported.
2270  RCHECK(entries[i].is_protected == 0);
2271  RCHECK(entries[i].per_sample_iv_size == 0);
2272  }
2273 
2274  }
2275  return true;
2276 }
2277 
2278 uint32_t SampleGroupDescription::ComputeSizeInternal() {
2279  // Version 0 is obsoleted, so always generate version 1 box.
2280  version = 1;
2281  // This box is optional. Skip it if it is not used.
2282  if (entries.empty())
2283  return 0;
2284  size_t entries_size = 0;
2285  for (const auto& entry : entries) {
2286  entries_size += sizeof(uint32_t) + kCencKeyIdSize +
2287  (entry.constant_iv.empty()
2288  ? 0
2289  : (sizeof(uint8_t) + entry.constant_iv.size()));
2290  }
2291  return HeaderSize() + sizeof(grouping_type) +
2292  (version == 1 ? sizeof(uint32_t) : 0) + sizeof(uint32_t) +
2293  entries_size;
2294 }
2295 
2296 TrackFragment::TrackFragment() : decode_time_absent(false) {}
2297 TrackFragment::~TrackFragment() {}
2298 FourCC TrackFragment::BoxType() const { return FOURCC_traf; }
2299 
2300 bool TrackFragment::ReadWriteInternal(BoxBuffer* buffer) {
2301  RCHECK(ReadWriteHeaderInternal(buffer) &&
2302  buffer->PrepareChildren() &&
2303  buffer->ReadWriteChild(&header));
2304  if (buffer->Reading()) {
2305  DCHECK(buffer->reader());
2306  decode_time_absent = !buffer->reader()->ChildExist(&decode_time);
2307  if (!decode_time_absent)
2308  RCHECK(buffer->ReadWriteChild(&decode_time));
2309  RCHECK(buffer->reader()->TryReadChildren(&runs));
2310 
2311  // There could be multiple SampleGroupDescription and SampleToGroup boxes
2312  // with different grouping types. For common encryption, the relevant
2313  // grouping type is 'seig'. Continue reading until 'seig' is found, or
2314  // until running out of child boxes.
2315  while (sample_to_group.grouping_type != FOURCC_seig &&
2316  buffer->reader()->ChildExist(&sample_to_group)) {
2317  RCHECK(buffer->reader()->ReadChild(&sample_to_group));
2318  }
2319  while (sample_group_description.grouping_type != FOURCC_seig &&
2320  buffer->reader()->ChildExist(&sample_group_description)) {
2321  RCHECK(buffer->reader()->ReadChild(&sample_group_description));
2322  }
2323  } else {
2324  if (!decode_time_absent)
2325  RCHECK(buffer->ReadWriteChild(&decode_time));
2326  for (uint32_t i = 0; i < runs.size(); ++i)
2327  RCHECK(buffer->ReadWriteChild(&runs[i]));
2328  RCHECK(buffer->TryReadWriteChild(&sample_to_group) &&
2329  buffer->TryReadWriteChild(&sample_group_description));
2330  }
2331  return buffer->TryReadWriteChild(&auxiliary_size) &&
2332  buffer->TryReadWriteChild(&auxiliary_offset) &&
2333  buffer->TryReadWriteChild(&sample_encryption);
2334 }
2335 
2336 uint32_t TrackFragment::ComputeSizeInternal() {
2337  uint32_t box_size =
2338  HeaderSize() + header.ComputeSize() + decode_time.ComputeSize() +
2339  sample_to_group.ComputeSize() + sample_group_description.ComputeSize() +
2340  auxiliary_size.ComputeSize() + auxiliary_offset.ComputeSize() +
2341  sample_encryption.ComputeSize();
2342  for (uint32_t i = 0; i < runs.size(); ++i)
2343  box_size += runs[i].ComputeSize();
2344  return box_size;
2345 }
2346 
2347 MovieFragment::MovieFragment() {}
2348 MovieFragment::~MovieFragment() {}
2349 FourCC MovieFragment::BoxType() const { return FOURCC_moof; }
2350 
2351 bool MovieFragment::ReadWriteInternal(BoxBuffer* buffer) {
2352  RCHECK(ReadWriteHeaderInternal(buffer) &&
2353  buffer->PrepareChildren() &&
2354  buffer->ReadWriteChild(&header));
2355  if (buffer->Reading()) {
2356  BoxReader* reader = buffer->reader();
2357  DCHECK(reader);
2358  RCHECK(reader->ReadChildren(&tracks) &&
2359  reader->TryReadChildren(&pssh));
2360  } else {
2361  for (uint32_t i = 0; i < tracks.size(); ++i)
2362  RCHECK(buffer->ReadWriteChild(&tracks[i]));
2363  for (uint32_t i = 0; i < pssh.size(); ++i)
2364  RCHECK(buffer->ReadWriteChild(&pssh[i]));
2365  }
2366  return true;
2367 }
2368 
2369 uint32_t MovieFragment::ComputeSizeInternal() {
2370  uint32_t box_size = HeaderSize() + header.ComputeSize();
2371  for (uint32_t i = 0; i < tracks.size(); ++i)
2372  box_size += tracks[i].ComputeSize();
2373  for (uint32_t i = 0; i < pssh.size(); ++i)
2374  box_size += pssh[i].ComputeSize();
2375  return box_size;
2376 }
2377 
2378 SegmentIndex::SegmentIndex()
2379  : reference_id(0),
2380  timescale(0),
2381  earliest_presentation_time(0),
2382  first_offset(0) {}
2383 SegmentIndex::~SegmentIndex() {}
2384 FourCC SegmentIndex::BoxType() const { return FOURCC_sidx; }
2385 
2386 bool SegmentIndex::ReadWriteInternal(BoxBuffer* buffer) {
2387  RCHECK(ReadWriteHeaderInternal(buffer) &&
2388  buffer->ReadWriteUInt32(&reference_id) &&
2389  buffer->ReadWriteUInt32(&timescale));
2390 
2391  size_t num_bytes = (version == 1) ? sizeof(uint64_t) : sizeof(uint32_t);
2392  RCHECK(
2393  buffer->ReadWriteUInt64NBytes(&earliest_presentation_time, num_bytes) &&
2394  buffer->ReadWriteUInt64NBytes(&first_offset, num_bytes));
2395 
2396  uint16_t reference_count = references.size();
2397  RCHECK(buffer->IgnoreBytes(2) && // reserved.
2398  buffer->ReadWriteUInt16(&reference_count));
2399  references.resize(reference_count);
2400 
2401  uint32_t reference_type_size;
2402  uint32_t sap;
2403  for (uint32_t i = 0; i < reference_count; ++i) {
2404  if (!buffer->Reading()) {
2405  reference_type_size = references[i].referenced_size;
2406  if (references[i].reference_type)
2407  reference_type_size |= (1 << 31);
2408  sap = (references[i].sap_type << 28) | references[i].sap_delta_time;
2409  if (references[i].starts_with_sap)
2410  sap |= (1 << 31);
2411  }
2412  RCHECK(buffer->ReadWriteUInt32(&reference_type_size) &&
2413  buffer->ReadWriteUInt32(&references[i].subsegment_duration) &&
2414  buffer->ReadWriteUInt32(&sap));
2415  if (buffer->Reading()) {
2416  references[i].reference_type = (reference_type_size >> 31) ? true : false;
2417  references[i].referenced_size = reference_type_size & ~(1 << 31);
2418  references[i].starts_with_sap = (sap >> 31) ? true : false;
2419  references[i].sap_type =
2420  static_cast<SegmentReference::SAPType>((sap >> 28) & 0x07);
2421  references[i].sap_delta_time = sap & ~(0xF << 28);
2422  }
2423  }
2424  return true;
2425 }
2426 
2427 uint32_t SegmentIndex::ComputeSizeInternal() {
2428  version = IsFitIn32Bits(earliest_presentation_time, first_offset) ? 0 : 1;
2429  return HeaderSize() + sizeof(reference_id) + sizeof(timescale) +
2430  sizeof(uint32_t) * (1 + version) * 2 + 2 * sizeof(uint16_t) +
2431  3 * sizeof(uint32_t) * references.size();
2432 }
2433 
2434 MediaData::MediaData() : data_size(0) {}
2435 MediaData::~MediaData() {}
2436 FourCC MediaData::BoxType() const { return FOURCC_mdat; }
2437 
2438 bool MediaData::ReadWriteInternal(BoxBuffer* buffer) {
2439  NOTIMPLEMENTED() << "Actual data is parsed and written separately.";
2440  return false;
2441 }
2442 
2443 uint32_t MediaData::ComputeSizeInternal() {
2444  return HeaderSize() + data_size;
2445 }
2446 
2447 CueSourceIDBox::CueSourceIDBox() : source_id(kCueSourceIdNotSet) {}
2448 CueSourceIDBox::~CueSourceIDBox() {}
2449 
2450 FourCC CueSourceIDBox::BoxType() const { return FOURCC_vsid; }
2451 
2452 bool CueSourceIDBox::ReadWriteInternal(BoxBuffer* buffer) {
2453  RCHECK(ReadWriteHeaderInternal(buffer) && buffer->ReadWriteInt32(&source_id));
2454  return true;
2455 }
2456 
2457 uint32_t CueSourceIDBox::ComputeSizeInternal() {
2458  if (source_id == kCueSourceIdNotSet)
2459  return 0;
2460  return HeaderSize() + sizeof(source_id);
2461 }
2462 
2463 CueTimeBox::CueTimeBox() {}
2464 CueTimeBox::~CueTimeBox() {}
2465 
2466 FourCC CueTimeBox::BoxType() const {
2467  return FOURCC_ctim;
2468 }
2469 
2470 bool CueTimeBox::ReadWriteInternal(BoxBuffer* buffer) {
2471  RCHECK(ReadWriteHeaderInternal(buffer));
2472  return buffer->ReadWriteString(
2473  &cue_current_time,
2474  buffer->Reading() ? buffer->BytesLeft() : cue_current_time.size());
2475 }
2476 
2477 uint32_t CueTimeBox::ComputeSizeInternal() {
2478  if (cue_current_time.empty())
2479  return 0;
2480  return HeaderSize() + cue_current_time.size();
2481 }
2482 
2483 CueIDBox::CueIDBox() {}
2484 CueIDBox::~CueIDBox() {}
2485 
2486 FourCC CueIDBox::BoxType() const {
2487  return FOURCC_iden;
2488 }
2489 
2490 bool CueIDBox::ReadWriteInternal(BoxBuffer* buffer) {
2491  RCHECK(ReadWriteHeaderInternal(buffer));
2492  return buffer->ReadWriteString(
2493  &cue_id, buffer->Reading() ? buffer->BytesLeft() : cue_id.size());
2494 }
2495 
2496 uint32_t CueIDBox::ComputeSizeInternal() {
2497  if (cue_id.empty())
2498  return 0;
2499  return HeaderSize() + cue_id.size();
2500 }
2501 
2502 CueSettingsBox::CueSettingsBox() {}
2503 CueSettingsBox::~CueSettingsBox() {}
2504 
2505 FourCC CueSettingsBox::BoxType() const {
2506  return FOURCC_sttg;
2507 }
2508 
2509 bool CueSettingsBox::ReadWriteInternal(BoxBuffer* buffer) {
2510  RCHECK(ReadWriteHeaderInternal(buffer));
2511  return buffer->ReadWriteString(
2512  &settings, buffer->Reading() ? buffer->BytesLeft() : settings.size());
2513 }
2514 
2515 uint32_t CueSettingsBox::ComputeSizeInternal() {
2516  if (settings.empty())
2517  return 0;
2518  return HeaderSize() + settings.size();
2519 }
2520 
2521 CuePayloadBox::CuePayloadBox() {}
2522 CuePayloadBox::~CuePayloadBox() {}
2523 
2524 FourCC CuePayloadBox::BoxType() const {
2525  return FOURCC_payl;
2526 }
2527 
2528 bool CuePayloadBox::ReadWriteInternal(BoxBuffer* buffer) {
2529  RCHECK(ReadWriteHeaderInternal(buffer));
2530  return buffer->ReadWriteString(
2531  &cue_text, buffer->Reading() ? buffer->BytesLeft() : cue_text.size());
2532 }
2533 
2534 uint32_t CuePayloadBox::ComputeSizeInternal() {
2535  return HeaderSize() + cue_text.size();
2536 }
2537 
2538 VTTEmptyCueBox::VTTEmptyCueBox() {}
2539 VTTEmptyCueBox::~VTTEmptyCueBox() {}
2540 
2541 FourCC VTTEmptyCueBox::BoxType() const {
2542  return FOURCC_vtte;
2543 }
2544 
2545 bool VTTEmptyCueBox::ReadWriteInternal(BoxBuffer* buffer) {
2546  return ReadWriteHeaderInternal(buffer);
2547 }
2548 
2549 uint32_t VTTEmptyCueBox::ComputeSizeInternal() {
2550  return HeaderSize();
2551 }
2552 
2553 VTTAdditionalTextBox::VTTAdditionalTextBox() {}
2554 VTTAdditionalTextBox::~VTTAdditionalTextBox() {}
2555 
2557  return FOURCC_vtta;
2558 }
2559 
2560 bool VTTAdditionalTextBox::ReadWriteInternal(BoxBuffer* buffer) {
2561  RCHECK(ReadWriteHeaderInternal(buffer));
2562  return buffer->ReadWriteString(
2563  &cue_additional_text,
2564  buffer->Reading() ? buffer->BytesLeft() : cue_additional_text.size());
2565 }
2566 
2567 uint32_t VTTAdditionalTextBox::ComputeSizeInternal() {
2568  return HeaderSize() + cue_additional_text.size();
2569 }
2570 
2571 VTTCueBox::VTTCueBox() {}
2572 VTTCueBox::~VTTCueBox() {}
2573 
2574 FourCC VTTCueBox::BoxType() const {
2575  return FOURCC_vttc;
2576 }
2577 
2578 bool VTTCueBox::ReadWriteInternal(BoxBuffer* buffer) {
2579  RCHECK(ReadWriteHeaderInternal(buffer) &&
2580  buffer->PrepareChildren() &&
2581  buffer->ReadWriteChild(&cue_source_id) &&
2582  buffer->ReadWriteChild(&cue_id) &&
2583  buffer->ReadWriteChild(&cue_time) &&
2584  buffer->ReadWriteChild(&cue_settings) &&
2585  buffer->ReadWriteChild(&cue_payload));
2586  return true;
2587 }
2588 
2589 uint32_t VTTCueBox::ComputeSizeInternal() {
2590  return HeaderSize() + cue_source_id.ComputeSize() + cue_id.ComputeSize() +
2591  cue_time.ComputeSize() + cue_settings.ComputeSize() +
2592  cue_payload.ComputeSize();
2593 }
2594 
2595 } // namespace mp4
2596 } // namespace media
2597 } // namespace edash_packager
FourCC BoxType() const override
bool ReadChildren(std::vector< T > *children) WARN_UNUSED_RESULT
Definition: box_reader.h:133
bool ReadChild(Box *child) WARN_UNUSED_RESULT
Definition: box_reader.cc:123
virtual bool ReadWriteHeaderInternal(BoxBuffer *buffer)
Definition: box.cc:61
bool ReadWriteHeaderInternal(BoxBuffer *buffer) final
Definition: box.cc:80
bool ParseFromSampleEncryptionData(size_t iv_size, std::vector< SampleEncryptionEntry > *sample_encryption_entries) const
bool ChildExist(Box *child) WARN_UNUSED_RESULT
Definition: box_reader.cc:136
bool ReadWriteUInt64NBytes(uint64_t *v, size_t num_bytes)
Definition: box_buffer.h:117
PrivFrame private_frame
We only support PrivateFrame in ID3. Other frames are ignored.
bool ReadWriteString(std::string *str, size_t size)
Definition: box_buffer.h:139
bool IgnoreBytes(size_t num_bytes)
Definition: box_buffer.h:189
virtual bool Parse(const std::vector< uint8_t > &data)
virtual uint32_t HeaderSize() const
Definition: box.cc:55
void Write(BufferWriter *writer)
Definition: box.cc:25
bool ParseFromBuffer(uint8_t iv_size, bool has_subsamples, BufferReader *reader)
bool TryReadChildren(std::vector< T > *children) WARN_UNUSED_RESULT
Definition: box_reader.h:139
Class for reading MP4 boxes.
Definition: box_reader.h:24
bool ReadWrite(uint8_t iv_size, bool has_subsamples, BoxBuffer *buffer)
uint32_t HeaderSize() const final
Definition: box.cc:75