// Copyright 2014 Google LLC. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file or at // https://developers.google.com/open-source/licenses/bsd #include #include #include #include namespace { // Increment an 8-byte counter by 1. Return true if overflowed. bool Increment64(uint8_t* counter) { DCHECK(counter); for (int i = 7; i >= 0; --i) { if (++counter[i] != 0) return false; } return true; } } // namespace namespace shaka { namespace media { // We don't support constant iv for counter mode, as we don't have a use case // for that. AesCtrEncryptor::AesCtrEncryptor() : AesCryptor(kDontUseConstantIv), block_offset_(0), encrypted_counter_(AES_BLOCK_SIZE, 0) {} AesCtrEncryptor::~AesCtrEncryptor() {} bool AesCtrEncryptor::InitializeWithIv(const std::vector& key, const std::vector& iv) { if (!SetupCipher(key.size(), kCtrMode)) { return false; } if (mbedtls_cipher_setkey(&cipher_ctx_, key.data(), static_cast(8 * key.size()), MBEDTLS_ENCRYPT) != 0) { LOG(ERROR) << "Failed to set CTR encryption key"; return false; } return SetIv(iv); } bool AesCtrEncryptor::CryptInternal(const uint8_t* plaintext, size_t plaintext_size, uint8_t* ciphertext, size_t* ciphertext_size) { DCHECK(plaintext); DCHECK(ciphertext); // |ciphertext_size| is always the same as |plaintext_size| for counter mode. if (*ciphertext_size < plaintext_size) { LOG(ERROR) << "Expecting output size of at least " << plaintext_size << " bytes."; return false; } *ciphertext_size = plaintext_size; for (size_t i = 0; i < plaintext_size; ++i) { if (block_offset_ == 0) { size_t ignored_output_size; CHECK_EQ( mbedtls_cipher_crypt(&cipher_ctx_, /* iv= */ NULL, /* iv_len= */ 0, &counter_[0], AES_BLOCK_SIZE, &encrypted_counter_[0], &ignored_output_size), 0); // As mentioned in ISO/IEC 23001-7:2016 CENC spec, of the 16 byte counter // block, bytes 8 to 15 (i.e. the least significant bytes) are used as a // simple 64 bit unsigned integer that is incremented by one for each // subsequent block of sample data processed and is kept in network byte // order. Increment64(&counter_[8]); } ciphertext[i] = plaintext[i] ^ encrypted_counter_[block_offset_]; block_offset_ = (block_offset_ + 1) % AES_BLOCK_SIZE; } return true; } void AesCtrEncryptor::SetIvInternal() { block_offset_ = 0; counter_ = iv(); counter_.resize(AES_BLOCK_SIZE, 0); } AesCbcEncryptor::AesCbcEncryptor(CbcPaddingScheme padding_scheme) : AesCbcEncryptor(padding_scheme, kDontUseConstantIv) {} AesCbcEncryptor::AesCbcEncryptor(CbcPaddingScheme padding_scheme, ConstantIvFlag constant_iv_flag) : AesCryptor(constant_iv_flag), padding_scheme_(padding_scheme) { if (padding_scheme_ != kNoPadding) { CHECK_EQ(constant_iv_flag, kUseConstantIv) << "non-constant iv (cipher block chain across calls) only makes sense " "if the padding_scheme is kNoPadding."; } } AesCbcEncryptor::~AesCbcEncryptor() {} bool AesCbcEncryptor::InitializeWithIv(const std::vector& key, const std::vector& iv) { if (!SetupCipher(key.size(), kCbcMode)) { return false; } if (mbedtls_cipher_setkey(&cipher_ctx_, key.data(), static_cast(8 * key.size()), MBEDTLS_ENCRYPT) != 0) { LOG(ERROR) << "Failed to set CBC encryption key"; return false; } return SetIv(iv); } size_t AesCbcEncryptor::RequiredOutputSize(size_t plaintext_size) { return plaintext_size + NumPaddingBytes(plaintext_size); } bool AesCbcEncryptor::CryptInternal(const uint8_t* plaintext, size_t plaintext_size, uint8_t* ciphertext, size_t* ciphertext_size) { const size_t residual_block_size = plaintext_size % AES_BLOCK_SIZE; const size_t num_padding_bytes = NumPaddingBytes(plaintext_size); const size_t required_ciphertext_size = RequiredOutputSize(plaintext_size); if (*ciphertext_size < required_ciphertext_size) { LOG(ERROR) << "Expecting output size of at least " << required_ciphertext_size << " bytes."; return false; } *ciphertext_size = required_ciphertext_size; // Encrypt everything but the residual block using CBC. const size_t cbc_size = plaintext_size - residual_block_size; if (cbc_size != 0) { CbcEncryptBlocks(plaintext, cbc_size, ciphertext, internal_iv_.data()); } else if (padding_scheme_ == kCtsPadding) { // Don't have a full block, leave unencrypted. memcpy(ciphertext, plaintext, plaintext_size); return true; } if (residual_block_size == 0 && padding_scheme_ != kPkcs5Padding) { // No residual block. No need to do padding. return true; } if (padding_scheme_ == kNoPadding) { // The residual block is left unencrypted. memcpy(ciphertext + cbc_size, plaintext + cbc_size, residual_block_size); return true; } std::vector residual_block(plaintext + cbc_size, plaintext + plaintext_size); DCHECK_EQ(residual_block.size(), residual_block_size); uint8_t* residual_ciphertext_block = ciphertext + cbc_size; if (padding_scheme_ == kPkcs5Padding) { DCHECK_EQ(num_padding_bytes, AES_BLOCK_SIZE - residual_block_size); // Pad residue block with PKCS5 padding. residual_block.resize(AES_BLOCK_SIZE, static_cast(num_padding_bytes)); CbcEncryptBlocks(residual_block.data(), AES_BLOCK_SIZE, residual_ciphertext_block, internal_iv_.data()); } else { DCHECK_EQ(num_padding_bytes, 0u); DCHECK_EQ(padding_scheme_, kCtsPadding); // Zero-pad the residual block and encrypt using CBC. residual_block.resize(AES_BLOCK_SIZE, 0); CbcEncryptBlocks(residual_block.data(), AES_BLOCK_SIZE, residual_block.data(), internal_iv_.data()); // Replace the last full block with the zero-padded, encrypted residual // block, and replace the residual block with the equivalent portion of the // last full encrypted block. It may appear that some encrypted bits of the // last full block are lost, but they are not, as they were used as the IV // when encrypting the zero-padded residual block. // This ordering of the output is described as "CS2" in literature. // https://en.wikipedia.org/wiki/Ciphertext_stealing#CS2 memcpy(residual_ciphertext_block, residual_ciphertext_block - AES_BLOCK_SIZE, residual_block_size); memcpy(residual_ciphertext_block - AES_BLOCK_SIZE, residual_block.data(), AES_BLOCK_SIZE); } return true; } void AesCbcEncryptor::SetIvInternal() { internal_iv_ = iv(); internal_iv_.resize(AES_BLOCK_SIZE, 0); } size_t AesCbcEncryptor::NumPaddingBytes(size_t size) const { return (padding_scheme_ == kPkcs5Padding) ? (AES_BLOCK_SIZE - (size % AES_BLOCK_SIZE)) : 0; } void AesCbcEncryptor::CbcEncryptBlocks(const uint8_t* plaintext, size_t plaintext_size, uint8_t* ciphertext, uint8_t* iv) { CHECK_EQ(plaintext_size % AES_BLOCK_SIZE, 0u); size_t output_size = 0; CHECK_EQ(mbedtls_cipher_crypt(&cipher_ctx_, iv, AES_BLOCK_SIZE, plaintext, plaintext_size, ciphertext, &output_size), 0); CHECK_EQ(output_size % AES_BLOCK_SIZE, 0u); CHECK_GT(output_size, 0u); uint8_t* last_block = ciphertext + output_size - AES_BLOCK_SIZE; memcpy(iv, last_block, AES_BLOCK_SIZE); } } // namespace media } // namespace shaka