// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include #include #include namespace shaka { namespace media { static const uint32_t kDefaultSampleRate = 44100; static const int32_t kTimescale = 1000000; class AudioTimestampHelperTest : public ::testing::Test { public: AudioTimestampHelperTest() : helper_(kTimescale, kDefaultSampleRate) { helper_.SetBaseTimestamp(0); } // Adds frames to the helper and returns the current timestamp in // microseconds. int64_t AddFrames(int frames) { helper_.AddFrames(frames); return helper_.GetTimestamp(); } int64_t FramesToTarget(int target_in_microseconds) { return helper_.GetFramesToTarget(target_in_microseconds); } void TestGetFramesToTargetRange(int frame_count, int start, int end) { for (int i = start; i <= end; ++i) { EXPECT_EQ(frame_count, FramesToTarget(i)) << " Failure for timestamp " << i << " us."; } } protected: AudioTimestampHelper helper_; DISALLOW_COPY_AND_ASSIGN(AudioTimestampHelperTest); }; TEST_F(AudioTimestampHelperTest, Basic) { EXPECT_EQ(0, helper_.GetTimestamp()); // Verify that the output timestamp is always rounded down to the // nearest microsecond. 1 frame @ 44100 is ~22.67573 microseconds, // which is why the timestamp sometimes increments by 23 microseconds // and other times it increments by 22 microseconds. EXPECT_EQ(0, AddFrames(0)); EXPECT_EQ(22, AddFrames(1)); EXPECT_EQ(45, AddFrames(1)); EXPECT_EQ(68, AddFrames(1)); EXPECT_EQ(90, AddFrames(1)); EXPECT_EQ(113, AddFrames(1)); // Verify that adding frames one frame at a time matches the timestamp // returned if the same number of frames are added all at once. int64_t timestamp_1 = helper_.GetTimestamp(); helper_.SetBaseTimestamp(kNoTimestamp); EXPECT_TRUE(kNoTimestamp == helper_.base_timestamp()); helper_.SetBaseTimestamp(0); EXPECT_EQ(0, helper_.GetTimestamp()); helper_.AddFrames(5); EXPECT_EQ(113, helper_.GetTimestamp()); EXPECT_TRUE(timestamp_1 == helper_.GetTimestamp()); } TEST_F(AudioTimestampHelperTest, GetDuration) { helper_.SetBaseTimestamp(100); int frame_count = 5; int64_t expected_durations[] = {113, 113, 114, 113, 113, 114}; for (size_t i = 0; i < std::size(expected_durations); ++i) { int64_t duration = helper_.GetFrameDuration(frame_count); EXPECT_EQ(expected_durations[i], duration); int64_t timestamp_1 = helper_.GetTimestamp() + duration; helper_.AddFrames(frame_count); int64_t timestamp_2 = helper_.GetTimestamp(); EXPECT_TRUE(timestamp_1 == timestamp_2); } } TEST_F(AudioTimestampHelperTest, GetFramesToTarget) { // Verify GetFramesToTarget() rounding behavior. // 1 frame @ 44100 is ~22.67573 microseconds, // Test values less than half of the frame duration. TestGetFramesToTargetRange(0, 0, 11); // Test values between half the frame duration & the // full frame duration. TestGetFramesToTargetRange(1, 12, 22); // Verify that the same number of frames is returned up // to the next half a frame. TestGetFramesToTargetRange(1, 23, 34); // Verify the next 3 ranges. TestGetFramesToTargetRange(2, 35, 56); TestGetFramesToTargetRange(3, 57, 79); TestGetFramesToTargetRange(4, 80, 102); TestGetFramesToTargetRange(5, 103, 124); // Add frames to the helper so negative frame counts can be tested. helper_.AddFrames(5); // Note: The timestamp ranges must match the positive values // tested above to verify that the code is rounding properly. TestGetFramesToTargetRange(0, 103, 124); TestGetFramesToTargetRange(-1, 80, 102); TestGetFramesToTargetRange(-2, 57, 79); TestGetFramesToTargetRange(-3, 35, 56); TestGetFramesToTargetRange(-4, 12, 34); TestGetFramesToTargetRange(-5, 0, 11); } } // namespace media } // namespace shaka