// Copyright 2016 Google Inc. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file or at // https://developers.google.com/open-source/licenses/bsd #include "packager/media/formats/mp2t/ts_writer.h" #include #include "packager/base/logging.h" #include "packager/media/base/audio_stream_info.h" #include "packager/media/base/buffer_writer.h" #include "packager/media/base/stream_info.h" #include "packager/media/base/video_stream_info.h" namespace edash_packager { namespace media { namespace mp2t { namespace { enum Pid : uint8_t { // The pid can be 13 bits long but 8 bits is sufficient for this library. // This is the minimum PID that can be used for PMT. kPmtPid = 0x20, // This is arbitrary number that is not reserved by the spec. kElementaryPid = 0x50, }; // Program number is 16 bits but 8 bits is sufficient. const uint8_t kProgramNumber = 0x01; const uint8_t kStreamTypeH264 = 0x1B; const uint8_t kStreamTypeAdtsAac = 0x0F; // For all the pointer fields in the following PAT and PMTs, they are not really // part of PAT or PMT but it's there so that TsPacket can point to a memory // location that starts from pointer field. const uint8_t kProgramAssociationTableId = 0x00; const uint8_t kProgramMapTableId = 0x02; // TODO(rkuroiwa): // Once encryption is added, another PAT must be used for the encrypted portion // e.g. version number set to 1. // But this works for clear lead and for clear segments. // Write PSI generator. const uint8_t kPat[] = { 0x00, // pointer field kProgramAssociationTableId, 0xB0, // The last 2 '00' assumes that this PAT is not very long. 0x0D, // Length of the rest of this array. 0x00, 0x00, // Transport stream ID is 0. 0xC1, // version number 0, current next indicator 1. 0x00, // section number 0x00, // last section number // program number -> PMT PID mapping. 0x00, 0x01, // program number is 1. 0xE0, // first 3 bits is reserved. kPmtPid, // CRC32. 0xF9, 0x62, 0xF5, 0x8B, }; // Like PAT, with encryption different PMTs are required. // It might make sense to add a PmtGenerator class. const uint8_t kPmtH264[] = { 0x00, // pointer field kProgramMapTableId, 0xB0, // assumes length is <= 256 bytes. 0x12, // length of the rest of this array. 0x00, kProgramNumber, 0xC1, // version 0, current next indicator 1. 0x00, // section number 0x00, // last section number. 0xE0, // first 3 bits reserved. kElementaryPid, // PCR PID is the elementary streams PID. 0xF0, // first 4 bits reserved. 0x00, // No descriptor at this level. kStreamTypeH264, 0xE0, kElementaryPid, // stream_type -> PID. 0xF0, 0x00, // Es_info_length is 0. // CRC32. 0x43, 0x49, 0x97, 0xBE, }; const uint8_t kPmtAac[] = { 0x00, // pointer field 0x02, // table id must be 0x02. 0xB0, // assumes length is <= 256 bytes. 0x12, // length of the rest of this array. 0x00, kProgramNumber, 0xC1, // version 0, current next indicator 1. 0x00, // section number 0x00, // last section number. 0xE0, // first 3 bits reserved. kElementaryPid, // PCR PID is the elementary streams PID. 0xF0, // first 4 bits reserved. 0x00, // No descriptor at this level. kStreamTypeAdtsAac, 0xE0, kElementaryPid, // stream_type -> PID. 0xF0, 0x00, // Es_info_length is 0. // CRC32. 0xE0, 0x6F, 0x1A, 0x31, }; const bool kHasPcr = true; const bool kPayloadUnitStartIndicator = true; const uint8_t kSyncByte = 0x47; const int kPcrFieldsSize = 6; // This is the size of the first few fields in a TS packet, i.e. TS packet size // without adaptation field or the payload. const int kTsPacketHeaderSize = 4; const int kTsPacketSize = 188; const int kTsPacketMaximumPayloadSize = kTsPacketSize - kTsPacketHeaderSize; const size_t kMaxPesPacketLengthValue = 0xFFFF; // Used for adaptation field padding bytes. const uint8_t kPaddingBytes[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, }; static_assert(arraysize(kPaddingBytes) >= kTsPacketMaximumPayloadSize, "Padding array is not big enough."); // |remaining_data_size| is the amount of data that has to be written. This may // be bigger than a TS packet size. // |remaining_data_size| matters if it is short and requires padding. void WriteAdaptationField(bool has_pcr, uint64_t pcr_base, size_t remaining_data_size, BufferWriter* writer) { // Special case where a TS packet requires 1 byte padding. if (!has_pcr && remaining_data_size == kTsPacketMaximumPayloadSize - 1) { writer->AppendInt(static_cast(0)); return; } // The size of the field itself. const int kAdaptationFieldLengthSize = 1; // The size of all leading flags (not including the adaptation_field_length). const int kAdaptationFieldHeaderSize = 1; int adaptation_field_length = kAdaptationFieldHeaderSize + (has_pcr ? kPcrFieldsSize : 0); if (remaining_data_size < kTsPacketMaximumPayloadSize) { const int current_ts_size = kTsPacketHeaderSize + remaining_data_size + adaptation_field_length + kAdaptationFieldLengthSize; if (current_ts_size < kTsPacketSize) { adaptation_field_length += kTsPacketSize - current_ts_size; } } writer->AppendInt(static_cast(adaptation_field_length)); int remaining_bytes = adaptation_field_length; writer->AppendInt(static_cast( // All flags except PCR_flag are 0. static_cast(has_pcr) << 4)); remaining_bytes -= 1; if (has_pcr) { // program_clock_reference_extension = 0. const uint32_t most_significant_32bits_pcr = static_cast(pcr_base >> 1); const uint16_t pcr_last_bit_reserved_and_pcr_extension = ((pcr_base & 1) << 15); writer->AppendInt(most_significant_32bits_pcr); writer->AppendInt(pcr_last_bit_reserved_and_pcr_extension); remaining_bytes -= kPcrFieldsSize; } DCHECK_GE(remaining_bytes, 0); if (remaining_bytes == 0) return; DCHECK_GE(static_cast(arraysize(kPaddingBytes)), remaining_bytes); writer->AppendArray(kPaddingBytes, remaining_bytes); } // |payload| can be any payload. Most likely raw PSI tables or PES packet // payload. void WritePayloadToBufferWriter(const uint8_t* payload, size_t payload_size, bool payload_unit_start_indicator, int pid, bool has_pcr, uint64_t pcr_base, ContinuityCounter* continuity_counter, BufferWriter* writer) { size_t payload_bytes_written = 0; do { const bool must_write_adaptation_header = has_pcr; const size_t bytes_left = payload_size - payload_bytes_written; const bool has_adaptation_field = must_write_adaptation_header || bytes_left < kTsPacketMaximumPayloadSize; writer->AppendInt(kSyncByte); writer->AppendInt(static_cast( // transport_error_indicator and transport_priority are both '0'. static_cast(payload_unit_start_indicator) << 14 | pid)); const uint8_t adaptation_field_control = ((has_adaptation_field ? 1 : 0) << 1) | ((bytes_left != 0) ? 1 : 0); // transport_scrambling_control is '00'. writer->AppendInt(static_cast(adaptation_field_control << 4 | continuity_counter->GetNext())); if (has_adaptation_field) { const size_t before = writer->Size(); WriteAdaptationField(has_pcr, pcr_base, bytes_left, writer); const size_t bytes_for_adaptation_field = writer->Size() - before; const int write_bytes = kTsPacketMaximumPayloadSize - bytes_for_adaptation_field; writer->AppendArray(payload + payload_bytes_written, write_bytes); payload_bytes_written += write_bytes; } else { writer->AppendArray(payload + payload_bytes_written, kTsPacketMaximumPayloadSize); payload_bytes_written += kTsPacketMaximumPayloadSize; } // Once written, not needed for this payload. has_pcr = false; payload_unit_start_indicator = false; } while (payload_bytes_written < payload_size); } void WritePatPmtToBuffer(const uint8_t* data, int data_size, int pid, ContinuityCounter* continuity_counter, BufferWriter* writer) { WritePayloadToBufferWriter(data, data_size, kPayloadUnitStartIndicator, pid, !kHasPcr, 0, continuity_counter, writer); } void WritePatToBuffer(const uint8_t* pat, int pat_size, ContinuityCounter* continuity_counter, BufferWriter* writer) { const int kPatPid = 0; WritePatPmtToBuffer(pat, pat_size, kPatPid, continuity_counter, writer); } void WritePmtToBuffer(const uint8_t* pmt, int pmt_size, ContinuityCounter* continuity_counter, BufferWriter* writer) { WritePatPmtToBuffer(pmt, pmt_size, kPmtPid, continuity_counter, writer); } // The only difference between writing PTS or DTS is the leading bits. void WritePtsOrDts(uint8_t leading_bits, uint64_t pts_or_dts, BufferWriter* writer) { // First byte has 3 MSB of PTS. uint8_t first_byte = leading_bits << 4 | (((pts_or_dts >> 30) & 0x07) << 1) | 1; // Second byte has the next 8 bits of pts. uint8_t second_byte = (pts_or_dts >> 22) & 0xFF; // Third byte has the next 7 bits of pts followed by a marker bit. uint8_t third_byte = (((pts_or_dts >> 15) & 0x7F) << 1) | 1; // Fourth byte has the next 8 bits of pts. uint8_t fourth_byte = ((pts_or_dts >> 7) & 0xFF); // Fifth byte has the last 7 bits of pts followed by a marker bit. uint8_t fifth_byte = ((pts_or_dts & 0x7F) << 1) | 1; writer->AppendInt(first_byte); writer->AppendInt(second_byte); writer->AppendInt(third_byte); writer->AppendInt(fourth_byte); writer->AppendInt(fifth_byte); } bool WritePesToFile(const PesPacket& pes, ContinuityCounter* continuity_counter, File* file) { // The size of the length field. const int kAdaptationFieldLengthSize = 1; // The size of the flags field. const int kAdaptationFieldHeaderSize = 1; const int kPcrFieldSize = 6; const int kTsPacketMaxPayloadWithPcr = kTsPacketMaximumPayloadSize - kAdaptationFieldLengthSize - kAdaptationFieldHeaderSize - kPcrFieldSize; const uint64_t pcr_base = pes.has_dts() ? pes.dts() : pes.pts(); const int pid = kElementaryPid; // This writer will hold part of PES packet after PES_packet_length field. BufferWriter pes_header_writer; // The first bit must be '10' for PES with video or audio stream id. The other // flags (bits) don't matter so they are 0. pes_header_writer.AppendInt(static_cast(0x80)); pes_header_writer.AppendInt( static_cast(static_cast(pes.has_pts()) << 7 | static_cast(pes.has_dts()) << 6 // Other fields are all 0. )); uint8_t pes_header_data_length = 0; if (pes.has_pts()) pes_header_data_length += 5; if (pes.has_dts()) pes_header_data_length += 5; pes_header_writer.AppendInt(pes_header_data_length); if (pes.has_pts() && pes.has_dts()) { WritePtsOrDts(0x03, pes.pts(), &pes_header_writer); WritePtsOrDts(0x01, pes.dts(), &pes_header_writer); } else if (pes.has_pts()) { WritePtsOrDts(0x02, pes.pts(), &pes_header_writer); } // Put the first TS packet's payload into a buffer. This contains the PES // packet's header. BufferWriter first_ts_packet_buffer(kTsPacketSize); first_ts_packet_buffer.AppendNBytes(static_cast(0x000001), 3); first_ts_packet_buffer.AppendInt(pes.stream_id()); const size_t pes_packet_length = pes.data().size() + pes_header_writer.Size(); first_ts_packet_buffer.AppendInt(static_cast( pes_packet_length > kMaxPesPacketLengthValue ? 0 : pes_packet_length)); first_ts_packet_buffer.AppendBuffer(pes_header_writer); const int available_payload = kTsPacketMaxPayloadWithPcr - first_ts_packet_buffer.Size(); const int bytes_consumed = std::min(static_cast(pes.data().size()), available_payload); first_ts_packet_buffer.AppendArray(pes.data().data(), bytes_consumed); BufferWriter output_writer; WritePayloadToBufferWriter(first_ts_packet_buffer.Buffer(), first_ts_packet_buffer.Size(), kPayloadUnitStartIndicator, pid, kHasPcr, pcr_base, continuity_counter, &output_writer); const size_t remaining_pes_data_size = pes.data().size() - bytes_consumed; if (remaining_pes_data_size > 0) { WritePayloadToBufferWriter(pes.data().data() + bytes_consumed, remaining_pes_data_size, !kPayloadUnitStartIndicator, pid, !kHasPcr, 0, continuity_counter, &output_writer); } return output_writer.WriteToFile(file).ok(); } } // namespace ContinuityCounter::ContinuityCounter() {} ContinuityCounter::~ContinuityCounter() {} int ContinuityCounter::GetNext() { int ret = counter_; ++counter_; counter_ %= 16; return ret; } TsWriter::TsWriter() {} TsWriter::~TsWriter() {} bool TsWriter::Initialize(const StreamInfo& stream_info) { // This buffer will hold PMT data after section_length field so that this // can be used to get the section_length. time_scale_ = stream_info.time_scale(); if (time_scale_ == 0) { LOG(ERROR) << "Timescale is 0."; return false; } const StreamType stream_type = stream_info.stream_type(); if (stream_type != StreamType::kStreamVideo && stream_type != StreamType::kStreamAudio) { LOG(ERROR) << "TsWriter cannot handle stream type " << stream_type << " yet."; return false; } const uint8_t* pmt = nullptr; size_t pmt_size = 0u; if (stream_info.stream_type() == StreamType::kStreamVideo) { const VideoStreamInfo& video_stream_info = static_cast(stream_info); if (video_stream_info.codec() != VideoCodec::kCodecH264) { LOG(ERROR) << "TsWriter cannot handle video codec " << video_stream_info.codec() << " yet."; return false; } pmt = kPmtH264; pmt_size = arraysize(kPmtH264); } else { DCHECK_EQ(stream_type, StreamType::kStreamAudio); const AudioStreamInfo& audio_stream_info = static_cast(stream_info); if (audio_stream_info.codec() != AudioCodec::kCodecAAC) { LOG(ERROR) << "TsWriter cannot handle audio codec " << audio_stream_info.codec() << " yet."; return false; } pmt = kPmtAac; pmt_size = arraysize(kPmtAac); } DCHECK(pmt); DCHECK_GT(pmt_size, 0u); // Most likely going to fit in 2 TS packets. BufferWriter psi_writer(kTsPacketSize * 2); WritePatToBuffer(kPat, arraysize(kPat), &pat_continuity_counter_, &psi_writer); WritePmtToBuffer(pmt, pmt_size, &pmt_continuity_counter_, &psi_writer); psi_writer.SwapBuffer(&psi_ts_packets_); return true; } bool TsWriter::NewSegment(const std::string& file_name) { DCHECK(!psi_ts_packets_.empty()); if (current_file_) { LOG(ERROR) << "File " << current_file_->file_name() << " still open."; return false; } current_file_.reset(File::Open(file_name.c_str(), "w")); if (!current_file_) { LOG(ERROR) << "Failed to open file " << file_name; return false; } // TODO(kqyang): Add WriteArrayToFile(). BufferWriter psi_writer(psi_ts_packets_.size()); psi_writer.AppendVector(psi_ts_packets_); if (!psi_writer.WriteToFile(current_file_.get()).ok()) { LOG(ERROR) << "Failed to write PSI to file."; return false; } return true; } bool TsWriter::FinalizeSegment() { return current_file_.release()->Close(); } bool TsWriter::AddPesPacket(scoped_ptr pes_packet) { if (time_scale_ == 0) { LOG(ERROR) << "Timescale is 0."; return false; } DCHECK(current_file_); if (!WritePesToFile(*pes_packet, &elementary_stream_continuity_counter_, current_file_.get())) { LOG(ERROR) << "Failed to write pes to file."; return false; } // No need to keep pes_packet around so not passing it anywhere. return true; } } // namespace mp2t } // namespace media } // namespace edash_packager