// Copyright 2014 Google Inc. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file or at // https://developers.google.com/open-source/licenses/bsd #include "packager/media/base/aes_encryptor.h" #include #include "packager/base/logging.h" namespace { // Increment an 8-byte counter by 1. Return true if overflowed. bool Increment64(uint8_t* counter) { DCHECK(counter); for (int i = 7; i >= 0; --i) if (++counter[i] != 0) return false; return true; } // According to ISO/IEC FDIS 23001-7: CENC spec, IV should be either // 64-bit (8-byte) or 128-bit (16-byte). bool IsIvSizeValid(size_t iv_size) { return iv_size == 8 || iv_size == 16; } // AES defines three key sizes: 128, 192 and 256 bits. bool IsKeySizeValidForAes(size_t key_size) { return key_size == 16 || key_size == 24 || key_size == 32; } } // namespace namespace edash_packager { namespace media { AesEncryptor::AesEncryptor() {} AesEncryptor::~AesEncryptor() {} bool AesEncryptor::InitializeWithIv(const std::vector& key, const std::vector& iv) { if (!IsKeySizeValidForAes(key.size())) { LOG(ERROR) << "Invalid AES key size: " << key.size(); return false; } CHECK_EQ(AES_set_encrypt_key(key.data(), key.size() * 8, mutable_aes_key()), 0); return SetIv(iv); } AesCtrEncryptor::AesCtrEncryptor() : block_offset_(0), encrypted_counter_(AES_BLOCK_SIZE, 0), counter_overflow_(false) {} AesCtrEncryptor::~AesCtrEncryptor() {} void AesCtrEncryptor::UpdateIv() { block_offset_ = 0; // As recommended in ISO/IEC FDIS 23001-7: CENC spec, for 64-bit (8-byte) // IV_Sizes, initialization vectors for subsequent samples can be created by // incrementing the initialization vector of the previous sample. // For 128-bit (16-byte) IV_Sizes, initialization vectors for subsequent // samples should be created by adding the block count of the previous sample // to the initialization vector of the previous sample. if (iv().size() == 8) { counter_ = iv(); Increment64(&counter_[0]); set_iv(counter_); counter_.resize(AES_BLOCK_SIZE, 0); } else { DCHECK_EQ(16u, iv().size()); // Even though the block counter portion of the counter (bytes 8 to 15) is // treated as a 64-bit number, it is recommended that the initialization // vector is treated as a 128-bit number when calculating the next // initialization vector from the previous one. The block counter portion // is already incremented by number of blocks, the other 64 bits of the // counter (bytes 0 to 7) is incremented here if the block counter portion // has overflowed. if (counter_overflow_) Increment64(&counter_[0]); set_iv(counter_); } counter_overflow_ = false; } bool AesCtrEncryptor::SetIv(const std::vector& iv) { if (!IsIvSizeValid(iv.size())) { LOG(ERROR) << "Invalid IV size: " << iv.size(); return false; } block_offset_ = 0; set_iv(iv); counter_ = iv; counter_.resize(AES_BLOCK_SIZE, 0); return true; } bool AesCtrEncryptor::CryptInternal(const uint8_t* plaintext, size_t plaintext_size, uint8_t* ciphertext, size_t* ciphertext_size) { DCHECK(plaintext); DCHECK(ciphertext); DCHECK(aes_key()); // |ciphertext_size| is always the same as |plaintext_size| for counter mode. if (*ciphertext_size < plaintext_size) { LOG(ERROR) << "Expecting output size of at least " << plaintext_size << " bytes."; return false; } *ciphertext_size = plaintext_size; for (size_t i = 0; i < plaintext_size; ++i) { if (block_offset_ == 0) { AES_encrypt(&counter_[0], &encrypted_counter_[0], aes_key()); // As mentioned in ISO/IEC FDIS 23001-7: CENC spec, of the 16 byte counter // block, bytes 8 to 15 (i.e. the least significant bytes) are used as a // simple 64 bit unsigned integer that is incremented by one for each // subsequent block of sample data processed and is kept in network byte // order. if (Increment64(&counter_[8])) counter_overflow_ = true; } ciphertext[i] = plaintext[i] ^ encrypted_counter_[block_offset_]; block_offset_ = (block_offset_ + 1) % AES_BLOCK_SIZE; } return true; } AesCbcEncryptor::AesCbcEncryptor(CbcPaddingScheme padding_scheme, bool chain_across_calls) : padding_scheme_(padding_scheme), chain_across_calls_(chain_across_calls) { if (padding_scheme_ != kNoPadding) { CHECK(!chain_across_calls) << "cipher block chain across calls only makes " "sense if the padding_scheme is kNoPadding."; } } AesCbcEncryptor::~AesCbcEncryptor() {} void AesCbcEncryptor::UpdateIv() { // From CENC spec: CBC mode Initialization Vectors need not be unique per // sample or Subsample and may be generated randomly or sequentially, e.g. // a per sample IV may be (1) equal to the cipher text of the last encrypted // cipher block (a continous cipher block chain across samples), or (2) // generated by incrementing the previuos IV by the number of cipher blocks in the last // sample or (3) by a fixed amount. We use method (1) here. No separate IV // update is needed. } bool AesCbcEncryptor::SetIv(const std::vector& iv) { if (iv.size() != AES_BLOCK_SIZE) { LOG(ERROR) << "Invalid IV size: " << iv.size(); return false; } set_iv(iv); return true; } bool AesCbcEncryptor::CryptInternal(const uint8_t* plaintext, size_t plaintext_size, uint8_t* ciphertext, size_t* ciphertext_size) { DCHECK(aes_key()); const size_t residual_block_size = plaintext_size % AES_BLOCK_SIZE; const size_t num_padding_bytes = NumPaddingBytes(plaintext_size); const size_t required_ciphertext_size = plaintext_size + num_padding_bytes; if (*ciphertext_size < required_ciphertext_size) { LOG(ERROR) << "Expecting output size of at least " << required_ciphertext_size << " bytes."; return false; } *ciphertext_size = required_ciphertext_size; // Encrypt everything but the residual block using CBC. const size_t cbc_size = plaintext_size - residual_block_size; std::vector local_iv(iv()); if (cbc_size != 0) { AES_cbc_encrypt(plaintext, ciphertext, cbc_size, aes_key(), local_iv.data(), AES_ENCRYPT); } else if (padding_scheme_ == kCtsPadding) { // Don't have a full block, leave unencrypted. memcpy(ciphertext, plaintext, plaintext_size); return true; } if (residual_block_size == 0 && padding_scheme_ != kPkcs5Padding) { if (chain_across_calls_) set_iv(local_iv); // No residual block. No need to do padding. return true; } DCHECK(!chain_across_calls_); if (padding_scheme_ == kNoPadding) { // The residual block is left unencrypted. memcpy(ciphertext + cbc_size, plaintext + cbc_size, residual_block_size); return true; } std::vector residual_block(plaintext + cbc_size, plaintext + plaintext_size); DCHECK_EQ(residual_block.size(), residual_block_size); uint8_t* residual_ciphertext_block = ciphertext + cbc_size; if (padding_scheme_ == kPkcs5Padding) { DCHECK_EQ(num_padding_bytes, AES_BLOCK_SIZE - residual_block_size); // Pad residue block with PKCS5 padding. residual_block.resize(AES_BLOCK_SIZE, static_cast(num_padding_bytes)); AES_cbc_encrypt(residual_block.data(), residual_ciphertext_block, AES_BLOCK_SIZE, aes_key(), local_iv.data(), AES_ENCRYPT); } else { DCHECK_EQ(num_padding_bytes, 0u); DCHECK_EQ(padding_scheme_, kCtsPadding); // Zero-pad the residual block and encrypt using CBC. residual_block.resize(AES_BLOCK_SIZE, 0); AES_cbc_encrypt(residual_block.data(), residual_block.data(), AES_BLOCK_SIZE, aes_key(), local_iv.data(), AES_ENCRYPT); // Replace the last full block with the zero-padded, encrypted residual // block, and replace the residual block with the equivalent portion of the // last full encrypted block. It may appear that some encrypted bits of the // last full block are lost, but they are not, as they were used as the IV // when encrypting the zero-padded residual block. memcpy(residual_ciphertext_block, residual_ciphertext_block - AES_BLOCK_SIZE, residual_block_size); memcpy(residual_ciphertext_block - AES_BLOCK_SIZE, residual_block.data(), AES_BLOCK_SIZE); } return true; } size_t AesCbcEncryptor::NumPaddingBytes(size_t size) const { return (padding_scheme_ == kPkcs5Padding) ? (AES_BLOCK_SIZE - (size % AES_BLOCK_SIZE)) : 0; } } // namespace media } // namespace edash_packager