// Copyright (c) 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef TOOLS_GN_SCOPE_H_ #define TOOLS_GN_SCOPE_H_ #include #include #include "base/basictypes.h" #include "base/containers/hash_tables.h" #include "base/memory/scoped_ptr.h" #include "tools/gn/err.h" #include "tools/gn/pattern.h" #include "tools/gn/value.h" class FunctionCallNode; class ImportManager; class ParseNode; class Settings; class TargetManager; // Scope for the script execution. // // Scopes are nested. Writing goes into the toplevel scope, reading checks // values resursively down the stack until a match is found or there are no // more containing scopes. // // A containing scope can be const or non-const. The const containing scope is // used primarily to refer to the master build config which is shared across // many invocations. A const containing scope, however, prevents us from // marking variables "used" which prevents us from issuing errors on unused // variables. So you should use a non-const containing scope whenever possible. class Scope { public: typedef std::vector > KeyValueVector; // Allows code to provide values for built-in variables. This class will // automatically register itself on construction and deregister itself on // destruction. class ProgrammaticProvider { public: ProgrammaticProvider(Scope* scope) : scope_(scope) { scope_->AddProvider(this); } ~ProgrammaticProvider() { scope_->RemoveProvider(this); } // Returns a non-null value if the given value can be programmatically // generated, or NULL if there is none. virtual const Value* GetProgrammaticValue( const base::StringPiece& ident) = 0; protected: Scope* scope_; }; // Creates an empty toplevel scope. Scope(const Settings* settings); // Creates a dependent scope. Scope(Scope* parent); Scope(const Scope* parent); ~Scope(); const Settings* settings() const { return settings_; } // See the const_/mutable_containing_ var declaraions below. Yes, it's a // bit weird that we can have a const pointer to the "mutable" one. Scope* mutable_containing() { return mutable_containing_; } const Scope* mutable_containing() const { return mutable_containing_; } const Scope* const_containing() const { return const_containing_; } const Scope* containing() const { return mutable_containing_ ? mutable_containing_ : const_containing_; } // Returns NULL if there's no such value. // // counts_as_used should be set if the variable is being read in a way that // should count for unused variable checking. const Value* GetValue(const base::StringPiece& ident, bool counts_as_used); const Value* GetValue(const base::StringPiece& ident) const; // Same as GetValue, but if the value exists in a parent scope, we'll copy // it to the current scope. If the return value is non-null, the value is // guaranteed to be set in the current scope. Generatlly this will be used // if the calling code is planning on modifying the value in-place. // // Since this is used when doing read-modifies, we never count this access // as reading the variable, since we assume it will be written to. Value* GetValueForcedToCurrentScope(const base::StringPiece& ident, const ParseNode* set_node); // The set_node indicates the statement that caused the set, for displaying // errors later. Returns a pointer to the value in the current scope (a copy // is made for storage). Value* SetValue(const base::StringPiece& ident, const Value& v, const ParseNode* set_node); // Templates associated with this scope. A template can only be set once, so // AddTemplate will fail and return NULL if a rule with that name already // exists. GetTemplate returns NULL if the rule doesn't exist, and it will // check all containing scoped rescursively. bool AddTemplate(const std::string& name, const FunctionCallNode* decl); const FunctionCallNode* GetTemplate(const std::string& name) const; // Marks the given identifier as (un)used in the current scope. void MarkUsed(const base::StringPiece& ident); void MarkUnused(const base::StringPiece& ident); // Checks to see if the scope has a var set that hasn't been used. This is // called before replacing the var with a different one. It does not check // containing scopes. // // If the identifier is present but hasnn't been used, return true. bool IsSetButUnused(const base::StringPiece& ident) const; // Checks the scope to see if any values were set but not used, and fills in // the error and returns false if they were. bool CheckForUnusedVars(Err* err) const; // Returns all values set in the current scope, without going to the parent // scopes. void GetCurrentScopeValues(KeyValueVector* output) const; // Copies this scope's values into the destination. Values from the // containing scope(s) (normally shadowed into the current one) will not be // copied, neither will the reference to the containing scope (this is why // it's "non-recursive"). // // It is an error to merge a variable into a scope that already has something // with that name in scope (meaning in that scope or in any of its containing // scopes). If this happens, the error will be set and the function will // return false. // // This is used in different contexts. When generating the error, the given // parse node will be blamed, and the given desc will be used to describe // the operation that doesn't support doing this. For example, desc_for_err // would be "import" when doing an import, and the error string would say // something like "The import contains...". bool NonRecursiveMergeTo(Scope* dest, const ParseNode* node_for_err, const char* desc_for_err, Err* err) const; // Makes an empty scope with the given name. Returns NULL if the name is // already set. Scope* MakeTargetDefaults(const std::string& target_type); // Gets the scope associated with the given target name, or null if it hasn't // been set. const Scope* GetTargetDefaults(const std::string& target_type) const; // Filter to apply when the sources variable is assigned. May return NULL. const PatternList* GetSourcesAssignmentFilter() const; void set_sources_assignment_filter( scoped_ptr f) { sources_assignment_filter_ = f.Pass(); } // Indicates if we're currently processing the build configuration file. // This is true when processing the config file for any toolchain. See also // *ProcessingDefaultBuildConfig() below. // // To set or clear the flag, it must currently be in the opposite state in // the current scope. Note that querying the state of the flag recursively // checks all containing scopes until it reaches the top or finds the flag // set. void SetProcessingBuildConfig(); void ClearProcessingBuildConfig(); bool IsProcessingBuildConfig() const; // Indicates we're currently processing the default toolchain's build // configuration file. void SetProcessingDefaultBuildConfig(); void ClearProcessingDefaultBuildConfig(); bool IsProcessingDefaultBuildConfig() const; // Indicates if we're currently processing an import file. // // See SetProcessingBaseConfig for how flags work. void SetProcessingImport(); void ClearProcessingImport(); bool IsProcessingImport() const; // Properties are opaque pointers that code can use to set state on a Scope // that it can retrieve later. // // The key should be a pointer to some use-case-specific object (to avoid // collisions, otherwise it doesn't matter). Memory management is up to the // setter. Setting the value to NULL will delete the property. // // Getting a property recursively searches all scopes, and the optional // |found_on_scope| variable will be filled with the actual scope containing // the key (if the pointer is non-NULL). void SetProperty(const void* key, void* value); void* GetProperty(const void* key, const Scope** found_on_scope) const; private: friend class ProgrammaticProvider; struct Record { Record() : used(false) {} Record(const Value& v) : used(false), value(v) {} bool used; // Set to true when the variable is used. Value value; }; void AddProvider(ProgrammaticProvider* p); void RemoveProvider(ProgrammaticProvider* p); // Scopes can have no containing scope (both null), a mutable containing // scope, or a const containing scope. The reason is that when we're doing // a new target, we want to refer to the base_config scope which will be read // by multiple threads at the same time, so we REALLY want it to be const. // When you jsut do a nested {}, however, we sometimes want to be able to // change things (especially marking unused vars). const Scope* const_containing_; Scope* mutable_containing_; const Settings* settings_; // Bits set for different modes. See the flag definitions in the .cc file // for more. unsigned mode_flags_; typedef base::hash_map RecordMap; RecordMap values_; // Owning pointers. Note that this can't use string pieces since the names // are constructed from Values which might be deallocated before this goes // out of scope. typedef base::hash_map NamedScopeMap; NamedScopeMap target_defaults_; // Null indicates not set and that we should fallback to the containing // scope's filter. scoped_ptr sources_assignment_filter_; // Non-owning pointers, the function calls are owned by the input file which // should be kept around by the input file manager. typedef std::map TemplateMap; TemplateMap templates_; typedef std::map PropertyMap; PropertyMap properties_; typedef std::set ProviderSet; ProviderSet programmatic_providers_; DISALLOW_COPY_AND_ASSIGN(Scope); }; #endif // TOOLS_GN_SCOPE_H_