// Copyright 2014 Google Inc. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file or at // https://developers.google.com/open-source/licenses/bsd #include "media/base/aes_encryptor.h" #include #include "base/logging.h" #include "base/rand_util.h" namespace { // Increment an 8-byte counter by 1. Return true if overflowed. bool Increment64(uint8* counter) { DCHECK(counter); for (int i = 7; i >= 0; --i) if (++counter[i] != 0) return false; return true; } // According to ISO/IEC FDIS 23001-7: CENC spec, IV should be either // 64-bit (8-byte) or 128-bit (16-byte). bool IsIvSizeValid(size_t iv_size) { return iv_size == 8 || iv_size == 16; } // AES defines three key sizes: 128, 192 and 256 bits. bool IsKeySizeValidForAes(size_t key_size) { return key_size == 16 || key_size == 24 || key_size == 32; } // CENC protection scheme uses 128-bit keys in counter mode. const uint32 kCencKeySize = 16; } // namespace namespace media { AesCtrEncryptor::AesCtrEncryptor() : block_offset_(0), encrypted_counter_(AES_BLOCK_SIZE, 0), counter_overflow_(false) { COMPILE_ASSERT(AES_BLOCK_SIZE == kCencKeySize, cenc_key_size_should_be_the_same_as_aes_block_size); } AesCtrEncryptor::~AesCtrEncryptor() {} bool AesCtrEncryptor::InitializeWithRandomIv(const std::vector& key, uint8 iv_size) { // TODO: Should we use RAND_bytes provided by openssl instead? std::vector iv(iv_size, 0); base::RandBytes(&iv[0], iv_size); return InitializeWithIv(key, iv); } bool AesCtrEncryptor::InitializeWithIv(const std::vector& key, const std::vector& iv) { if (key.size() != kCencKeySize) { LOG(ERROR) << "Invalid key size of " << key.size() << " for CENC."; return false; } if (!IsIvSizeValid(iv.size())) { LOG(ERROR) << "Invalid IV size: " << iv.size(); return false; } aes_key_.reset(new AES_KEY()); CHECK_EQ(AES_set_encrypt_key(&key[0], AES_BLOCK_SIZE * 8, aes_key_.get()), 0); return SetIv(iv); } bool AesCtrEncryptor::Encrypt(const uint8* plaintext, size_t plaintext_size, uint8* ciphertext) { DCHECK(plaintext); DCHECK(ciphertext); DCHECK(aes_key_); for (size_t i = 0; i < plaintext_size; ++i) { if (block_offset_ == 0) { AES_encrypt(&counter_[0], &encrypted_counter_[0], aes_key_.get()); // As mentioned in ISO/IEC FDIS 23001-7: CENC spec, of the 16 byte counter // block, bytes 8 to 15 (i.e. the least significant bytes) are used as a // simple 64 bit unsigned integer that is incremented by one for each // subsequent block of sample data processed and is kept in network byte // order. if (Increment64(&counter_[8])) counter_overflow_ = true; } ciphertext[i] = plaintext[i] ^ encrypted_counter_[block_offset_]; block_offset_ = (block_offset_ + 1) % AES_BLOCK_SIZE; } return true; } void AesCtrEncryptor::UpdateIv() { block_offset_ = 0; // As recommended in ISO/IEC FDIS 23001-7: CENC spec, for 64-bit (8-byte) // IV_Sizes, initialization vectors for subsequent samples can be created by // incrementing the initialization vector of the previous sample. // For 128-bit (16-byte) IV_Sizes, initialization vectors for subsequent // samples should be created by adding the block count of the previous sample // to the initialization vector of the previous sample. if (iv_.size() == 8) { Increment64(&iv_[0]); counter_ = iv_; counter_.resize(AES_BLOCK_SIZE, 0); } else { DCHECK_EQ(16, iv_.size()); // Even though the block counter portion of the counter (bytes 8 to 15) is // treated as a 64-bit number, it is recommended that the initialization // vector is treated as a 128-bit number when calculating the next // initialization vector from the previous one. The block counter portion // is already incremented by number of blocks, the other 64 bits of the // counter (bytes 0 to 7) is incremented here if the block counter portion // has overflowed. if (counter_overflow_) Increment64(&counter_[0]); iv_ = counter_; } counter_overflow_ = false; } bool AesCtrEncryptor::SetIv(const std::vector& iv) { if (!IsIvSizeValid(iv.size())) { LOG(ERROR) << "Invalid IV size: " << iv.size(); return false; } block_offset_ = 0; counter_ = iv_ = iv; counter_.resize(AES_BLOCK_SIZE, 0); return true; } AesCbcEncryptor::AesCbcEncryptor() {} AesCbcEncryptor::~AesCbcEncryptor() {} bool AesCbcEncryptor::InitializeWithIv(const std::vector& key, const std::vector& iv) { if (!IsKeySizeValidForAes(key.size())) { LOG(ERROR) << "Invalid AES key size: " << key.size(); return false; } if (iv.size() != AES_BLOCK_SIZE) { LOG(ERROR) << "Invalid IV size: " << iv.size(); return false; } encrypt_key_.reset(new AES_KEY()); CHECK_EQ(AES_set_encrypt_key(&key[0], key.size() * 8, encrypt_key_.get()), 0); iv_ = iv; return true; } void AesCbcEncryptor::Encrypt(const std::string& plaintext, std::string* ciphertext) { DCHECK(ciphertext); DCHECK(encrypt_key_); // Pad the input with PKCS5 padding. const size_t num_padding_bytes = AES_BLOCK_SIZE - (plaintext.size() % AES_BLOCK_SIZE); std::string padded_text = plaintext; padded_text.append(num_padding_bytes, static_cast(num_padding_bytes)); ciphertext->resize(padded_text.size()); AES_cbc_encrypt(reinterpret_cast(padded_text.data()), reinterpret_cast(string_as_array(ciphertext)), padded_text.size(), encrypt_key_.get(), &iv_[0], AES_ENCRYPT); } bool AesCbcEncryptor::SetIv(const std::vector& iv) { if (iv.size() != AES_BLOCK_SIZE) { LOG(ERROR) << "Invalid IV size: " << iv.size(); return false; } iv_ = iv; return true; } AesCbcDecryptor::AesCbcDecryptor() {} AesCbcDecryptor::~AesCbcDecryptor() {} bool AesCbcDecryptor::InitializeWithIv(const std::vector& key, const std::vector& iv) { if (!IsKeySizeValidForAes(key.size())) { LOG(ERROR) << "Invalid AES key size: " << key.size(); return false; } if (iv.size() != AES_BLOCK_SIZE) { LOG(ERROR) << "Invalid IV size: " << iv.size(); return false; } decrypt_key_.reset(new AES_KEY()); CHECK_EQ(AES_set_decrypt_key(&key[0], key.size() * 8, decrypt_key_.get()), 0); iv_ = iv; return true; } bool AesCbcDecryptor::Decrypt(const std::string& ciphertext, std::string* plaintext) { if ((ciphertext.size() % AES_BLOCK_SIZE) != 0) { LOG(ERROR) << "Expecting cipher text size to be multiple of " << AES_BLOCK_SIZE << ", got " << ciphertext.size(); return false; } DCHECK(plaintext); DCHECK(decrypt_key_); plaintext->resize(ciphertext.size()); AES_cbc_encrypt(reinterpret_cast(ciphertext.data()), reinterpret_cast(string_as_array(plaintext)), ciphertext.size(), decrypt_key_.get(), &iv_[0], AES_DECRYPT); // Strip off PKCS5 padding bytes. const uint8 num_padding_bytes = (*plaintext)[plaintext->size() - 1]; if (num_padding_bytes > AES_BLOCK_SIZE) { LOG(ERROR) << "Padding length is too large : " << static_cast(num_padding_bytes); return false; } plaintext->resize(plaintext->size() - num_padding_bytes); return true; } bool AesCbcDecryptor::SetIv(const std::vector& iv) { if (iv.size() != AES_BLOCK_SIZE) { LOG(ERROR) << "Invalid IV size: " << iv.size(); return false; } iv_ = iv; return true; } } // namespace media