// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include #include #include #include #include #include #include static const int kPesStartCode = 0x000001; // Given that |time| is coded using 33 bits, // UnrollTimestamp returns the corresponding unrolled timestamp. // The unrolled timestamp is defined by: // |time| + k * (2 ^ 33) // where k is estimated so that the unrolled timestamp // is as close as possible to |previous_unrolled_time|. static int64_t UnrollTimestamp(int64_t previous_unrolled_time, int64_t time) { // Mpeg2 TS timestamps have an accuracy of 33 bits. const int nbits = 33; // |timestamp| has a precision of |nbits| // so make sure the highest bits are set to 0. DCHECK_EQ((time >> nbits), 0); // Consider 3 possibilities to estimate the missing high bits of |time|. int64_t previous_unrolled_time_high = (previous_unrolled_time >> nbits); int64_t time0 = ((previous_unrolled_time_high - 1) << nbits) | time; int64_t time1 = ((previous_unrolled_time_high + 0) << nbits) | time; int64_t time2 = ((previous_unrolled_time_high + 1) << nbits) | time; // Select the min absolute difference with the current time // so as to ensure time continuity. int64_t diff0 = time0 - previous_unrolled_time; int64_t diff1 = time1 - previous_unrolled_time; int64_t diff2 = time2 - previous_unrolled_time; if (diff0 < 0) diff0 = -diff0; if (diff1 < 0) diff1 = -diff1; if (diff2 < 0) diff2 = -diff2; int64_t unrolled_time; int64_t min_diff; if (diff1 < diff0) { unrolled_time = time1; min_diff = diff1; } else { unrolled_time = time0; min_diff = diff0; } if (diff2 < min_diff) unrolled_time = time2; return unrolled_time; } static bool IsTimestampSectionValid(int64_t timestamp_section) { // |pts_section| has 40 bits: // - starting with either '0010' or '0011' or '0001' // - and ending with a marker bit. // See ITU H.222 standard - PES section. // Verify that all the marker bits are set to one. return ((timestamp_section & 0x1) != 0) && ((timestamp_section & 0x10000) != 0) && ((timestamp_section & 0x100000000LL) != 0); } static int64_t ConvertTimestampSectionToTimestamp(int64_t timestamp_section) { return (((timestamp_section >> 33) & 0x7) << 30) | (((timestamp_section >> 17) & 0x7fff) << 15) | (((timestamp_section >> 1) & 0x7fff) << 0); } namespace shaka { namespace media { namespace mp2t { TsSectionPes::TsSectionPes(std::unique_ptr es_parser) : es_parser_(es_parser.release()), wait_for_pusi_(true), previous_pts_valid_(false), previous_pts_(0), previous_dts_valid_(false), previous_dts_(0) { DCHECK(es_parser_); } TsSectionPes::~TsSectionPes() { } bool TsSectionPes::Parse(bool payload_unit_start_indicator, const uint8_t* buf, int size) { // Ignore partial PES. if (wait_for_pusi_ && !payload_unit_start_indicator) return true; bool parse_result = true; if (payload_unit_start_indicator) { // Try emitting a packet since we might have a pending PES packet // with an undefined size. // In this case, a unit is emitted when the next unit is coming. int raw_pes_size; const uint8_t* raw_pes; pes_byte_queue_.Peek(&raw_pes, &raw_pes_size); if (raw_pes_size > 0) parse_result = Emit(true); // Reset the state. ResetPesState(); // Update the state. wait_for_pusi_ = false; } // Add the data to the parser state. if (size > 0) pes_byte_queue_.Push(buf, size); // Try emitting the current PES packet. return (parse_result && Emit(false)); } bool TsSectionPes::Flush() { // Try emitting a packet since we might have a pending PES packet // with an undefined size. RCHECK(Emit(true)); // Flush the underlying ES parser. return es_parser_->Flush(); } void TsSectionPes::Reset() { ResetPesState(); previous_pts_valid_ = false; previous_pts_ = 0; previous_dts_valid_ = false; previous_dts_ = 0; es_parser_->Reset(); } bool TsSectionPes::Emit(bool emit_for_unknown_size) { int raw_pes_size; const uint8_t* raw_pes; pes_byte_queue_.Peek(&raw_pes, &raw_pes_size); // A PES should be at least 6 bytes. // Wait for more data to come if not enough bytes. if (raw_pes_size < 6) return true; // Check whether we have enough data to start parsing. int pes_packet_length = (static_cast(raw_pes[4]) << 8) | (static_cast(raw_pes[5])); if ((pes_packet_length == 0 && !emit_for_unknown_size) || (pes_packet_length != 0 && raw_pes_size < pes_packet_length + 6)) { // Wait for more data to come either because: // - there are not enough bytes, // - or the PES size is unknown and the "force emit" flag is not set. // (PES size might be unknown for video PES packet). return true; } DVLOG(LOG_LEVEL_PES) << "pes_packet_length=" << pes_packet_length; // Parse the packet. bool parse_result = ParseInternal(raw_pes, raw_pes_size); // Reset the state. ResetPesState(); return parse_result; } bool TsSectionPes::ParseInternal(const uint8_t* raw_pes, int raw_pes_size) { BitReader bit_reader(raw_pes, raw_pes_size); // Read up to the pes_packet_length (6 bytes). int packet_start_code_prefix; int stream_id; int pes_packet_length; RCHECK(bit_reader.ReadBits(24, &packet_start_code_prefix)); RCHECK(bit_reader.ReadBits(8, &stream_id)); RCHECK(bit_reader.ReadBits(16, &pes_packet_length)); RCHECK(packet_start_code_prefix == kPesStartCode); DVLOG(LOG_LEVEL_PES) << "stream_id=" << stream_id; if (pes_packet_length == 0) pes_packet_length = static_cast(bit_reader.bits_available()) / 8; // Ignore the PES for unknown stream IDs. // ATSC Standard A/52:2012 3. GENERIC IDENTIFICATION OF AN AC-3 STREAM. // AC3/E-AC3 stream uses private stream id. const int kPrivateStream1 = 0xBD; // See ITU H.222 Table 2-22 "Stream_id assignments" bool is_audio_stream_id = ((stream_id & 0xe0) == 0xc0) || stream_id == kPrivateStream1; bool is_video_stream_id = ((stream_id & 0xf0) == 0xe0); if (!is_audio_stream_id && !is_video_stream_id) return true; // Read up to "pes_header_data_length". int dummy_2; int PES_scrambling_control; int PES_priority; int data_alignment_indicator; int copyright; int original_or_copy; int pts_dts_flags; int escr_flag; int es_rate_flag; int dsm_trick_mode_flag; int additional_copy_info_flag; int pes_crc_flag; int pes_extension_flag; int pes_header_data_length; RCHECK(bit_reader.ReadBits(2, &dummy_2)); RCHECK(dummy_2 == 0x2); RCHECK(bit_reader.ReadBits(2, &PES_scrambling_control)); RCHECK(bit_reader.ReadBits(1, &PES_priority)); RCHECK(bit_reader.ReadBits(1, &data_alignment_indicator)); RCHECK(bit_reader.ReadBits(1, ©right)); RCHECK(bit_reader.ReadBits(1, &original_or_copy)); RCHECK(bit_reader.ReadBits(2, &pts_dts_flags)); RCHECK(bit_reader.ReadBits(1, &escr_flag)); RCHECK(bit_reader.ReadBits(1, &es_rate_flag)); RCHECK(bit_reader.ReadBits(1, &dsm_trick_mode_flag)); RCHECK(bit_reader.ReadBits(1, &additional_copy_info_flag)); RCHECK(bit_reader.ReadBits(1, &pes_crc_flag)); RCHECK(bit_reader.ReadBits(1, &pes_extension_flag)); RCHECK(bit_reader.ReadBits(8, &pes_header_data_length)); int pes_header_start_size = static_cast(bit_reader.bits_available()) / 8; // Compute the size and the offset of the ES payload. // "6" for the 6 bytes read before and including |pes_packet_length|. // "3" for the 3 bytes read before and including |pes_header_data_length|. int es_size = pes_packet_length - 3 - pes_header_data_length; int es_offset = 6 + 3 + pes_header_data_length; RCHECK(es_size >= 0); RCHECK(es_offset + es_size <= raw_pes_size); // Read the timing information section. bool is_pts_valid = false; bool is_dts_valid = false; int64_t pts_section = 0; int64_t dts_section = 0; if (pts_dts_flags == 0x2) { RCHECK(bit_reader.ReadBits(40, &pts_section)); RCHECK((((pts_section >> 36) & 0xf) == 0x2) && IsTimestampSectionValid(pts_section)); is_pts_valid = true; } if (pts_dts_flags == 0x3) { RCHECK(bit_reader.ReadBits(40, &pts_section)); RCHECK(bit_reader.ReadBits(40, &dts_section)); RCHECK((((pts_section >> 36) & 0xf) == 0x3) && IsTimestampSectionValid(pts_section)); RCHECK((((dts_section >> 36) & 0xf) == 0x1) && IsTimestampSectionValid(dts_section)); is_pts_valid = true; is_dts_valid = true; } // Convert and unroll the timestamps. int64_t media_pts(kNoTimestamp); int64_t media_dts(kNoTimestamp); if (is_dts_valid) { int64_t dts = ConvertTimestampSectionToTimestamp(dts_section); if (previous_dts_valid_) dts = UnrollTimestamp(previous_dts_, dts); previous_dts_ = dts; previous_dts_valid_ = true; media_dts = dts; } if (is_pts_valid) { int64_t pts = ConvertTimestampSectionToTimestamp(pts_section); if (previous_pts_valid_) { pts = UnrollTimestamp(previous_pts_, pts); } else { if (media_dts != kNoTimestamp) { pts = UnrollTimestamp(media_dts, pts); } } previous_pts_ = pts; previous_pts_valid_ = true; media_pts = pts; } // Discard the rest of the PES packet header. DCHECK_EQ(bit_reader.bits_available() % 8, 0u); int pes_header_remaining_size = pes_header_data_length - (pes_header_start_size - static_cast(bit_reader.bits_available()) / 8); RCHECK(pes_header_remaining_size >= 0); // Read the PES packet. DVLOG(LOG_LEVEL_PES) << "Emit a reassembled PES:" << " size=" << es_size << " pts=" << media_pts << " dts=" << media_dts << " data_alignment_indicator=" << data_alignment_indicator; return es_parser_->Parse(&raw_pes[es_offset], es_size, media_pts, media_dts); } void TsSectionPes::ResetPesState() { pes_byte_queue_.Reset(); wait_for_pusi_ = true; } } // namespace mp2t } // namespace media } // namespace shaka