// Copyright 2014 Google Inc. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file or at // https://developers.google.com/open-source/licenses/bsd #include "packager/media/base/aes_encryptor.h" #include #include #include #include "packager/base/logging.h" namespace { // Increment an 8-byte counter by 1. Return true if overflowed. bool Increment64(uint8_t* counter) { DCHECK(counter); for (int i = 7; i >= 0; --i) if (++counter[i] != 0) return false; return true; } // According to ISO/IEC FDIS 23001-7: CENC spec, IV should be either // 64-bit (8-byte) or 128-bit (16-byte). bool IsIvSizeValid(size_t iv_size) { return iv_size == 8 || iv_size == 16; } // AES defines three key sizes: 128, 192 and 256 bits. bool IsKeySizeValidForAes(size_t key_size) { return key_size == 16 || key_size == 24 || key_size == 32; } // CENC protection scheme uses 128-bit keys in counter mode. const uint32_t kCencKeySize = 16; } // namespace namespace edash_packager { namespace media { AesEncryptor::AesEncryptor() {} AesEncryptor::~AesEncryptor() {} bool AesEncryptor::InitializeWithRandomIv( const std::vector& key, uint8_t iv_size) { std::vector iv(iv_size, 0); if (RAND_bytes(&iv[0], iv_size) != 1) { LOG(ERROR) << "RAND_bytes failed with error: " << ERR_error_string(ERR_get_error(), NULL); return false; } return InitializeWithIv(key, iv); } bool AesEncryptor::Encrypt(const std::vector& plaintext, std::vector* ciphertext) { if (plaintext.empty()) return true; ciphertext->resize(plaintext.size() + NumPaddingBytes(plaintext.size())); return EncryptData(plaintext.data(), plaintext.size(), ciphertext->data()); } bool AesEncryptor::Encrypt(const std::string& plaintext, std::string* ciphertext) { ciphertext->resize(plaintext.size() + NumPaddingBytes(plaintext.size())); return EncryptData(reinterpret_cast(plaintext.data()), plaintext.size(), reinterpret_cast(string_as_array(ciphertext))); } AesCtrEncryptor::AesCtrEncryptor() : block_offset_(0), encrypted_counter_(AES_BLOCK_SIZE, 0), counter_overflow_(false) { COMPILE_ASSERT(AES_BLOCK_SIZE == kCencKeySize, cenc_key_size_should_be_the_same_as_aes_block_size); } AesCtrEncryptor::~AesCtrEncryptor() {} bool AesCtrEncryptor::InitializeWithIv(const std::vector& key, const std::vector& iv) { if (key.size() != kCencKeySize) { LOG(ERROR) << "Invalid key size of " << key.size() << " for CENC."; return false; } if (!IsIvSizeValid(iv.size())) { LOG(ERROR) << "Invalid IV size: " << iv.size(); return false; } aes_key_.reset(new AES_KEY()); CHECK_EQ(AES_set_encrypt_key(&key[0], AES_BLOCK_SIZE * 8, aes_key_.get()), 0); return SetIv(iv); } size_t AesCtrEncryptor::NumPaddingBytes(size_t size) { return 0; } bool AesCtrEncryptor::EncryptData(const uint8_t* plaintext, size_t plaintext_size, uint8_t* ciphertext) { DCHECK(plaintext); DCHECK(ciphertext); DCHECK(aes_key_); for (size_t i = 0; i < plaintext_size; ++i) { if (block_offset_ == 0) { AES_encrypt(&counter_[0], &encrypted_counter_[0], aes_key_.get()); // As mentioned in ISO/IEC FDIS 23001-7: CENC spec, of the 16 byte counter // block, bytes 8 to 15 (i.e. the least significant bytes) are used as a // simple 64 bit unsigned integer that is incremented by one for each // subsequent block of sample data processed and is kept in network byte // order. if (Increment64(&counter_[8])) counter_overflow_ = true; } ciphertext[i] = plaintext[i] ^ encrypted_counter_[block_offset_]; block_offset_ = (block_offset_ + 1) % AES_BLOCK_SIZE; } return true; } void AesCtrEncryptor::UpdateIv() { block_offset_ = 0; // As recommended in ISO/IEC FDIS 23001-7: CENC spec, for 64-bit (8-byte) // IV_Sizes, initialization vectors for subsequent samples can be created by // incrementing the initialization vector of the previous sample. // For 128-bit (16-byte) IV_Sizes, initialization vectors for subsequent // samples should be created by adding the block count of the previous sample // to the initialization vector of the previous sample. if (iv_.size() == 8) { Increment64(&iv_[0]); counter_ = iv_; counter_.resize(AES_BLOCK_SIZE, 0); } else { DCHECK_EQ(16u, iv_.size()); // Even though the block counter portion of the counter (bytes 8 to 15) is // treated as a 64-bit number, it is recommended that the initialization // vector is treated as a 128-bit number when calculating the next // initialization vector from the previous one. The block counter portion // is already incremented by number of blocks, the other 64 bits of the // counter (bytes 0 to 7) is incremented here if the block counter portion // has overflowed. if (counter_overflow_) Increment64(&counter_[0]); iv_ = counter_; } counter_overflow_ = false; } bool AesCtrEncryptor::SetIv(const std::vector& iv) { if (!IsIvSizeValid(iv.size())) { LOG(ERROR) << "Invalid IV size: " << iv.size(); return false; } block_offset_ = 0; counter_ = iv_ = iv; counter_.resize(AES_BLOCK_SIZE, 0); return true; } AesCbcPkcs5Encryptor::AesCbcPkcs5Encryptor() {} AesCbcPkcs5Encryptor::~AesCbcPkcs5Encryptor() {} bool AesCbcPkcs5Encryptor::InitializeWithIv(const std::vector& key, const std::vector& iv) { if (!IsKeySizeValidForAes(key.size())) { LOG(ERROR) << "Invalid AES key size: " << key.size(); return false; } if (iv.size() != AES_BLOCK_SIZE) { LOG(ERROR) << "Invalid IV size: " << iv.size(); return false; } aes_key_.reset(new AES_KEY()); CHECK_EQ(AES_set_encrypt_key(&key[0], key.size() * 8, aes_key_.get()), 0); iv_ = iv; return true; } size_t AesCbcPkcs5Encryptor::NumPaddingBytes(size_t size) { return AES_BLOCK_SIZE - (size % AES_BLOCK_SIZE); } bool AesCbcPkcs5Encryptor::EncryptData(const uint8_t* plaintext, size_t plaintext_size, uint8_t* ciphertext) { DCHECK(ciphertext); DCHECK(aes_key_); // Pad the input with PKCS5 padding. // TODO(kqyang): Consider more efficient implementation. memcpy(ciphertext, plaintext, plaintext_size); for (size_t i = plaintext_size; i < plaintext_size + NumPaddingBytes(plaintext_size); ++i) { ciphertext[i] = NumPaddingBytes(plaintext_size); } std::vector iv(iv_); AES_cbc_encrypt(ciphertext, ciphertext, plaintext_size + NumPaddingBytes(plaintext_size), aes_key_.get(), &iv[0], AES_ENCRYPT); return true; } void AesCbcPkcs5Encryptor::UpdateIv() {} bool AesCbcPkcs5Encryptor::SetIv(const std::vector& iv) { if (iv.size() != AES_BLOCK_SIZE) { LOG(ERROR) << "Invalid IV size: " << iv.size(); return false; } iv_ = iv; return true; } AesCbcCtsEncryptor::AesCbcCtsEncryptor() {} AesCbcCtsEncryptor::~AesCbcCtsEncryptor() {} bool AesCbcCtsEncryptor::InitializeWithIv(const std::vector& key, const std::vector& iv) { if (!IsKeySizeValidForAes(key.size())) { LOG(ERROR) << "Invalid AES key size: " << key.size(); return false; } if (iv.size() != AES_BLOCK_SIZE) { LOG(ERROR) << "Invalid IV size: " << iv.size(); return false; } aes_key_.reset(new AES_KEY()); CHECK_EQ(AES_set_encrypt_key(&key[0], key.size() * 8, aes_key_.get()), 0); iv_ = iv; return true; } size_t AesCbcCtsEncryptor::NumPaddingBytes(size_t size) { return 0; } bool AesCbcCtsEncryptor::EncryptData(const uint8_t* plaintext, size_t size, uint8_t* ciphertext) { DCHECK(plaintext); DCHECK(ciphertext); if (size < AES_BLOCK_SIZE) { // Don't have a full block, leave unencrypted. memcpy(ciphertext, plaintext, size); return true; } std::vector iv(iv_); size_t residual_block_size = size % AES_BLOCK_SIZE; size_t cbc_size = size - residual_block_size; // Encrypt everything but the residual block using CBC. AES_cbc_encrypt(plaintext, ciphertext, cbc_size, aes_key_.get(), &iv[0], AES_ENCRYPT); if (residual_block_size == 0) { // No residual block. No need to do ciphertext stealing. return true; } // Zero-pad the residual block and encrypt using CBC. std::vector residual_block(plaintext + size - residual_block_size, plaintext + size); residual_block.resize(AES_BLOCK_SIZE, 0); AES_cbc_encrypt(&residual_block[0], &residual_block[0], AES_BLOCK_SIZE, aes_key_.get(), &iv[0], AES_ENCRYPT); // Replace the last full block with the zero-padded, encrypted residual block, // and replace the residual block with the equivalent portion of the last full // encrypted block. It may appear that some encrypted bits of the last full // block are lost, but they are not, as they were used as the IV when // encrypting the zero-padded residual block. uint8_t* residual_ciphertext_block = ciphertext + size - residual_block_size; memcpy(residual_ciphertext_block, residual_ciphertext_block - AES_BLOCK_SIZE, residual_block_size); memcpy(residual_ciphertext_block - AES_BLOCK_SIZE, residual_block.data(), AES_BLOCK_SIZE); return true; } void AesCbcCtsEncryptor::UpdateIv() {} bool AesCbcCtsEncryptor::SetIv(const std::vector& iv) { if (iv.size() != AES_BLOCK_SIZE) { LOG(ERROR) << "Invalid IV size: " << iv.size(); return false; } iv_ = iv; return true; } } // namespace media } // namespace edash_packager