// Copyright 2016 Google Inc. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file or at // https://developers.google.com/open-source/licenses/bsd #include "packager/media/base/fixed_key_source.h" #include #include "packager/base/logging.h" #include "packager/base/strings/string_number_conversions.h" namespace shaka { namespace media { FixedKeySource::~FixedKeySource() {} Status FixedKeySource::FetchKeys(EmeInitDataType init_data_type, const std::vector& init_data) { // Do nothing for fixed key encryption/decryption. return Status::OK; } Status FixedKeySource::GetKey(const std::string& stream_label, EncryptionKey* key) { DCHECK(key); DCHECK(encryption_key_); *key = *encryption_key_; return Status::OK; } Status FixedKeySource::GetKey(const std::vector& key_id, EncryptionKey* key) { DCHECK(key); DCHECK(encryption_key_); if (key_id != encryption_key_->key_id) { return Status(error::NOT_FOUND, std::string("Key for key ID ") + base::HexEncode(&key_id[0], key_id.size()) + " was not found."); } *key = *encryption_key_; return Status::OK; } Status FixedKeySource::GetCryptoPeriodKey(uint32_t crypto_period_index, const std::string& stream_label, EncryptionKey* key) { // Create a copy of the key. *key = *encryption_key_; // A naive key rotation algorithm is implemented here by left rotating the // key, key_id and pssh. Note that this implementation is only intended for // testing purpose. The actual key rotation algorithm can be much more // complicated. LOG(WARNING) << "This naive key rotation algorithm should not be used in production."; std::rotate(key->key_id.begin(), key->key_id.begin() + (crypto_period_index % key->key_id.size()), key->key_id.end()); std::rotate(key->key.begin(), key->key.begin() + (crypto_period_index % key->key.size()), key->key.end()); for (size_t i = 0; i < key->key_system_info.size(); i++) { std::vector pssh_data = key->key_system_info[i].pssh_data(); if (!pssh_data.empty()) { std::rotate(pssh_data.begin(), pssh_data.begin() + (crypto_period_index % pssh_data.size()), pssh_data.end()); key->key_system_info[i].set_pssh_data(pssh_data); } } return Status::OK; } std::unique_ptr FixedKeySource::Create( const std::vector& key_id, const std::vector& key, const std::vector& pssh_boxes, const std::vector& iv) { std::unique_ptr encryption_key(new EncryptionKey()); if (key_id.size() != 16) { LOG(ERROR) << "Invalid key ID size '" << key_id.size() << "', must be 16 bytes."; return std::unique_ptr(); } if (key.size() != 16) { // CENC only supports AES-128, i.e. 16 bytes. LOG(ERROR) << "Invalid key size '" << key.size() << "', must be 16 bytes."; return std::unique_ptr(); } encryption_key->key_id = key_id; encryption_key->key = key; encryption_key->iv = iv; if (!ProtectionSystemSpecificInfo::ParseBoxes( pssh_boxes.data(), pssh_boxes.size(), &encryption_key->key_system_info)) { LOG(ERROR) << "--pssh argument should be full PSSH boxes."; return std::unique_ptr(); } // If there aren't any PSSH boxes given, create one with the common system ID. if (encryption_key->key_system_info.size() == 0) { ProtectionSystemSpecificInfo info; info.add_key_id(encryption_key->key_id); info.set_system_id(kCommonSystemId, arraysize(kCommonSystemId)); info.set_pssh_box_version(1); encryption_key->key_system_info.push_back(info); } return std::unique_ptr( new FixedKeySource(std::move(encryption_key))); } FixedKeySource::FixedKeySource() {} FixedKeySource::FixedKeySource(std::unique_ptr key) : encryption_key_(std::move(key)) {} } // namespace media } // namespace shaka