DASH Media Packaging SDK
 All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator
box_definitions.cc
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "packager/media/formats/mp4/box_definitions.h"
6 
7 #include <limits>
8 
9 #include "packager/base/logging.h"
10 #include "packager/media/base/bit_reader.h"
11 #include "packager/media/base/macros.h"
12 #include "packager/media/base/rcheck.h"
13 #include "packager/media/formats/mp4/box_buffer.h"
14 
15 namespace {
16 const uint32_t kFourCCSize = 4;
17 
18 // Key Id size as defined in CENC spec.
19 const uint32_t kCencKeyIdSize = 16;
20 
21 // 9 uint32_t in big endian formatted array.
22 const uint8_t kUnityMatrix[] = {0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
23  0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
24  0, 0, 0, 0, 0, 0, 0, 0, 0x40, 0, 0, 0};
25 
26 // Default entries for HandlerReference box.
27 const char kVideoHandlerName[] = "VideoHandler";
28 const char kAudioHandlerName[] = "SoundHandler";
29 const char kTextHandlerName[] = "TextHandler";
30 
31 // Default values for VideoSampleEntry box.
32 const uint32_t kVideoResolution = 0x00480000; // 72 dpi.
33 const uint16_t kVideoFrameCount = 1;
34 const uint16_t kVideoDepth = 0x0018;
35 
36 const uint32_t kCompressorNameSize = 32u;
37 const char kAvcCompressorName[] = "\012AVC Coding";
38 const char kHevcCompressorName[] = "\013HEVC Coding";
39 const char kVpcCompressorName[] = "\012VPC Coding";
40 
41 // Using negative value as "not set". It is very unlikely that 2^31 cues happen
42 // at once.
43 const int kCueSourceIdNotSet = -1;
44 
45 const size_t kInvalidIvSize = 1;
46 // According to ISO/IEC FDIS 23001-7: CENC spec, IV should be either
47 // 64-bit (8-byte) or 128-bit (16-byte).
48 // |per_sample_iv_size| of 0 means constant_iv is used.
49 bool IsIvSizeValid(size_t per_sample_iv_size) {
50  return per_sample_iv_size == 0 || per_sample_iv_size == 8 ||
51  per_sample_iv_size == 16;
52 }
53 
54 // Default values to construct the following fields in ddts box. Values are set
55 // according to FFMPEG.
56 // bit(2) FrameDuration; // 3 = 4096
57 // bit(5) StreamConstruction; // 18
58 // bit(1) CoreLFEPresent; // 0 = none
59 // bit(6) CoreLayout; // 31 = ignore core layout
60 // bit(14) CoreSize; // 0
61 // bit(1) StereoDownmix // 0 = none
62 // bit(3) RepresentationType; // 4
63 // bit(16) ChannelLayout; // 0xf = 5.1 channel layout.
64 // bit(1) MultiAssetFlag // 0 = single asset
65 // bit(1) LBRDurationMod // 0 = ignore
66 // bit(1) ReservedBoxPresent // 0 = none
67 // bit(5) Reserved // 0
68 const uint8_t kDdtsExtraData[] = {0xe4, 0x7c, 0, 4, 0, 0x0f, 0};
69 
70 // ID3v2 header: http://id3.org/id3v2.4.0-structure
71 const uint32_t kID3v2HeaderSize = 10;
72 const char kID3v2Identifier[] = "ID3";
73 const uint16_t kID3v2Version = 0x0400; // id3v2.4.0
74 
75 // Utility functions to check if the 64bit integers can fit in 32bit integer.
76 bool IsFitIn32Bits(uint64_t a) {
77  return a <= std::numeric_limits<uint32_t>::max();
78 }
79 
80 bool IsFitIn32Bits(int64_t a) {
81  return a <= std::numeric_limits<int32_t>::max() &&
82  a >= std::numeric_limits<int32_t>::min();
83 }
84 
85 template <typename T1, typename T2>
86 bool IsFitIn32Bits(T1 a1, T2 a2) {
87  return IsFitIn32Bits(a1) && IsFitIn32Bits(a2);
88 }
89 
90 template <typename T1, typename T2, typename T3>
91 bool IsFitIn32Bits(T1 a1, T2 a2, T3 a3) {
92  return IsFitIn32Bits(a1) && IsFitIn32Bits(a2) && IsFitIn32Bits(a3);
93 }
94 
95 } // namespace
96 
97 namespace edash_packager {
98 namespace media {
99 namespace mp4 {
100 
101 namespace {
102 
103 TrackType FourCCToTrackType(FourCC fourcc) {
104  switch (fourcc) {
105  case FOURCC_vide:
106  return kVideo;
107  case FOURCC_soun:
108  return kAudio;
109  case FOURCC_text:
110  return kText;
111  default:
112  return kInvalid;
113  }
114 }
115 
116 FourCC TrackTypeToFourCC(TrackType track_type) {
117  switch (track_type) {
118  case kVideo:
119  return FOURCC_vide;
120  case kAudio:
121  return FOURCC_soun;
122  case kText:
123  return FOURCC_text;
124  default:
125  return FOURCC_NULL;
126  }
127 }
128 
129 } // namespace
130 
131 FileType::FileType() : major_brand(FOURCC_NULL), minor_version(0) {}
132 FileType::~FileType() {}
133 FourCC FileType::BoxType() const { return FOURCC_ftyp; }
134 
135 bool FileType::ReadWriteInternal(BoxBuffer* buffer) {
136  RCHECK(ReadWriteHeaderInternal(buffer) &&
137  buffer->ReadWriteFourCC(&major_brand) &&
138  buffer->ReadWriteUInt32(&minor_version));
139  size_t num_brands;
140  if (buffer->Reading()) {
141  RCHECK(buffer->BytesLeft() % sizeof(FourCC) == 0);
142  num_brands = buffer->BytesLeft() / sizeof(FourCC);
143  compatible_brands.resize(num_brands);
144  } else {
145  num_brands = compatible_brands.size();
146  }
147  for (size_t i = 0; i < num_brands; ++i)
148  RCHECK(buffer->ReadWriteFourCC(&compatible_brands[i]));
149  return true;
150 }
151 
152 uint32_t FileType::ComputeSizeInternal() {
153  return HeaderSize() + kFourCCSize + sizeof(minor_version) +
154  kFourCCSize * compatible_brands.size();
155 }
156 
157 FourCC SegmentType::BoxType() const { return FOURCC_styp; }
158 
159 ProtectionSystemSpecificHeader::ProtectionSystemSpecificHeader() {}
160 ProtectionSystemSpecificHeader::~ProtectionSystemSpecificHeader() {}
161 FourCC ProtectionSystemSpecificHeader::BoxType() const { return FOURCC_pssh; }
162 
163 bool ProtectionSystemSpecificHeader::ReadWriteInternal(BoxBuffer* buffer) {
164  if (buffer->Reading()) {
165  BoxReader* reader = buffer->reader();
166  DCHECK(reader);
167  raw_box.assign(reader->data(), reader->data() + reader->size());
168  } else {
169  DCHECK(!raw_box.empty());
170  buffer->writer()->AppendVector(raw_box);
171  }
172 
173  return true;
174 }
175 
176 uint32_t ProtectionSystemSpecificHeader::ComputeSizeInternal() {
177  return raw_box.size();
178 }
179 
180 SampleAuxiliaryInformationOffset::SampleAuxiliaryInformationOffset() {}
181 SampleAuxiliaryInformationOffset::~SampleAuxiliaryInformationOffset() {}
182 FourCC SampleAuxiliaryInformationOffset::BoxType() const { return FOURCC_saio; }
183 
184 bool SampleAuxiliaryInformationOffset::ReadWriteInternal(BoxBuffer* buffer) {
185  RCHECK(ReadWriteHeaderInternal(buffer));
186  if (flags & 1)
187  RCHECK(buffer->IgnoreBytes(8)); // aux_info_type and parameter.
188 
189  uint32_t count = offsets.size();
190  RCHECK(buffer->ReadWriteUInt32(&count));
191  offsets.resize(count);
192 
193  size_t num_bytes = (version == 1) ? sizeof(uint64_t) : sizeof(uint32_t);
194  for (uint32_t i = 0; i < count; ++i)
195  RCHECK(buffer->ReadWriteUInt64NBytes(&offsets[i], num_bytes));
196  return true;
197 }
198 
199 uint32_t SampleAuxiliaryInformationOffset::ComputeSizeInternal() {
200  // This box is optional. Skip it if it is empty.
201  if (offsets.size() == 0)
202  return 0;
203  size_t num_bytes = (version == 1) ? sizeof(uint64_t) : sizeof(uint32_t);
204  return HeaderSize() + sizeof(uint32_t) + num_bytes * offsets.size();
205 }
206 
207 SampleAuxiliaryInformationSize::SampleAuxiliaryInformationSize()
208  : default_sample_info_size(0), sample_count(0) {}
209 SampleAuxiliaryInformationSize::~SampleAuxiliaryInformationSize() {}
210 FourCC SampleAuxiliaryInformationSize::BoxType() const { return FOURCC_saiz; }
211 
212 bool SampleAuxiliaryInformationSize::ReadWriteInternal(BoxBuffer* buffer) {
213  RCHECK(ReadWriteHeaderInternal(buffer));
214  if (flags & 1)
215  RCHECK(buffer->IgnoreBytes(8));
216 
217  RCHECK(buffer->ReadWriteUInt8(&default_sample_info_size) &&
218  buffer->ReadWriteUInt32(&sample_count));
219  if (default_sample_info_size == 0)
220  RCHECK(buffer->ReadWriteVector(&sample_info_sizes, sample_count));
221  return true;
222 }
223 
224 uint32_t SampleAuxiliaryInformationSize::ComputeSizeInternal() {
225  // This box is optional. Skip it if it is empty.
226  if (sample_count == 0)
227  return 0;
228  return HeaderSize() + sizeof(default_sample_info_size) +
229  sizeof(sample_count) +
230  (default_sample_info_size == 0 ? sample_info_sizes.size() : 0);
231 }
232 
233 SampleEncryptionEntry::SampleEncryptionEntry() {}
234 SampleEncryptionEntry::~SampleEncryptionEntry() {}
235 
236 bool SampleEncryptionEntry::ReadWrite(uint8_t iv_size,
237  bool has_subsamples,
238  BoxBuffer* buffer) {
239  DCHECK(IsIvSizeValid(iv_size));
240  DCHECK(buffer);
241 
242  RCHECK(buffer->ReadWriteVector(&initialization_vector, iv_size));
243 
244  if (!has_subsamples) {
245  subsamples.clear();
246  return true;
247  }
248 
249  uint16_t subsample_count = subsamples.size();
250  RCHECK(buffer->ReadWriteUInt16(&subsample_count));
251  RCHECK(subsample_count > 0);
252  subsamples.resize(subsample_count);
253  for (auto& subsample : subsamples) {
254  RCHECK(buffer->ReadWriteUInt16(&subsample.clear_bytes) &&
255  buffer->ReadWriteUInt32(&subsample.cipher_bytes));
256  }
257  return true;
258 }
259 
261  bool has_subsamples,
262  BufferReader* reader) {
263  DCHECK(IsIvSizeValid(iv_size));
264  DCHECK(reader);
265 
266  initialization_vector.resize(iv_size);
267  RCHECK(reader->ReadToVector(&initialization_vector, iv_size));
268 
269  if (!has_subsamples) {
270  subsamples.clear();
271  return true;
272  }
273 
274  uint16_t subsample_count;
275  RCHECK(reader->Read2(&subsample_count));
276  RCHECK(subsample_count > 0);
277  subsamples.resize(subsample_count);
278  for (auto& subsample : subsamples) {
279  RCHECK(reader->Read2(&subsample.clear_bytes) &&
280  reader->Read4(&subsample.cipher_bytes));
281  }
282  return true;
283 }
284 
286  const uint32_t subsample_entry_size = sizeof(uint16_t) + sizeof(uint32_t);
287  const uint16_t subsample_count = subsamples.size();
288  return initialization_vector.size() +
289  (subsample_count > 0 ? (sizeof(subsample_count) +
290  subsample_entry_size * subsample_count)
291  : 0);
292 }
293 
295  uint32_t size = 0;
296  for (uint32_t i = 0; i < subsamples.size(); ++i)
297  size += subsamples[i].clear_bytes + subsamples[i].cipher_bytes;
298  return size;
299 }
300 
301 SampleEncryption::SampleEncryption() : iv_size(kInvalidIvSize) {}
302 SampleEncryption::~SampleEncryption() {}
303 FourCC SampleEncryption::BoxType() const { return FOURCC_senc; }
304 
305 bool SampleEncryption::ReadWriteInternal(BoxBuffer* buffer) {
306  RCHECK(ReadWriteHeaderInternal(buffer));
307 
308  // If we don't know |iv_size|, store sample encryption data to parse later
309  // after we know iv_size.
310  if (buffer->Reading() && iv_size == kInvalidIvSize) {
311  RCHECK(
312  buffer->ReadWriteVector(&sample_encryption_data, buffer->BytesLeft()));
313  return true;
314  }
315 
316  if (!IsIvSizeValid(iv_size)) {
317  LOG(ERROR)
318  << "IV_size can only be 8 or 16 or 0 for constant iv, but seeing "
319  << iv_size;
320  return false;
321  }
322 
323  uint32_t sample_count = sample_encryption_entries.size();
324  RCHECK(buffer->ReadWriteUInt32(&sample_count));
325 
326  sample_encryption_entries.resize(sample_count);
327  for (auto& sample_encryption_entry : sample_encryption_entries) {
328  RCHECK(sample_encryption_entry.ReadWrite(
329  iv_size, flags & kUseSubsampleEncryption, buffer));
330  }
331  return true;
332 }
333 
334 uint32_t SampleEncryption::ComputeSizeInternal() {
335  const uint32_t sample_count = sample_encryption_entries.size();
336  if (sample_count == 0) {
337  // Sample encryption box is optional. Skip it if it is empty.
338  return 0;
339  }
340 
341  DCHECK(IsIvSizeValid(iv_size));
342  uint32_t box_size = HeaderSize() + sizeof(sample_count);
343  if (flags & kUseSubsampleEncryption) {
344  for (const SampleEncryptionEntry& sample_encryption_entry :
345  sample_encryption_entries) {
346  box_size += sample_encryption_entry.ComputeSize();
347  }
348  } else {
349  box_size += sample_count * iv_size;
350  }
351  return box_size;
352 }
353 
355  size_t iv_size,
356  std::vector<SampleEncryptionEntry>* sample_encryption_entries) const {
357  DCHECK(IsIvSizeValid(iv_size));
358 
359  BufferReader reader(sample_encryption_data.data(),
360  sample_encryption_data.size());
361  uint32_t sample_count = 0;
362  RCHECK(reader.Read4(&sample_count));
363 
364  sample_encryption_entries->resize(sample_count);
365  for (auto& sample_encryption_entry : *sample_encryption_entries) {
366  RCHECK(sample_encryption_entry.ParseFromBuffer(
367  iv_size, flags & kUseSubsampleEncryption, &reader));
368  }
369  return true;
370 }
371 
372 OriginalFormat::OriginalFormat() : format(FOURCC_NULL) {}
373 OriginalFormat::~OriginalFormat() {}
374 FourCC OriginalFormat::BoxType() const { return FOURCC_frma; }
375 
376 bool OriginalFormat::ReadWriteInternal(BoxBuffer* buffer) {
377  return ReadWriteHeaderInternal(buffer) && buffer->ReadWriteFourCC(&format);
378 }
379 
380 uint32_t OriginalFormat::ComputeSizeInternal() {
381  return HeaderSize() + kFourCCSize;
382 }
383 
384 SchemeType::SchemeType() : type(FOURCC_NULL), version(0) {}
385 SchemeType::~SchemeType() {}
386 FourCC SchemeType::BoxType() const { return FOURCC_schm; }
387 
388 bool SchemeType::ReadWriteInternal(BoxBuffer* buffer) {
389  RCHECK(ReadWriteHeaderInternal(buffer) &&
390  buffer->ReadWriteFourCC(&type) &&
391  buffer->ReadWriteUInt32(&version));
392  return true;
393 }
394 
395 uint32_t SchemeType::ComputeSizeInternal() {
396  return HeaderSize() + kFourCCSize + sizeof(version);
397 }
398 
399 TrackEncryption::TrackEncryption()
400  : default_is_protected(0),
401  default_per_sample_iv_size(0),
402  default_kid(16, 0),
403  default_crypt_byte_block(0),
404  default_skip_byte_block(0) {}
405 TrackEncryption::~TrackEncryption() {}
406 FourCC TrackEncryption::BoxType() const { return FOURCC_tenc; }
407 
408 bool TrackEncryption::ReadWriteInternal(BoxBuffer* buffer) {
409  if (!buffer->Reading()) {
410  if (default_kid.size() != kCencKeyIdSize) {
411  LOG(WARNING) << "CENC defines key id length of " << kCencKeyIdSize
412  << " bytes; got " << default_kid.size()
413  << ". Resized accordingly.";
414  default_kid.resize(kCencKeyIdSize);
415  }
416  RCHECK(default_crypt_byte_block < 16 && default_skip_byte_block < 16);
417  if (default_crypt_byte_block != 0 && default_skip_byte_block != 0) {
418  // Version 1 box is needed for pattern-based encryption.
419  version = 1;
420  }
421  }
422 
423  RCHECK(ReadWriteHeaderInternal(buffer) &&
424  buffer->IgnoreBytes(1)); // reserved.
425 
426  uint8_t pattern = default_crypt_byte_block << 4 | default_skip_byte_block;
427  RCHECK(buffer->ReadWriteUInt8(&pattern));
428  default_crypt_byte_block = pattern >> 4;
429  default_skip_byte_block = pattern & 0x0F;
430 
431  RCHECK(buffer->ReadWriteUInt8(&default_is_protected) &&
432  buffer->ReadWriteUInt8(&default_per_sample_iv_size) &&
433  buffer->ReadWriteVector(&default_kid, kCencKeyIdSize));
434 
435  if (default_is_protected == 1) {
436  if (default_per_sample_iv_size == 0) { // For constant iv.
437  uint8_t default_constant_iv_size = default_constant_iv.size();
438  RCHECK(buffer->ReadWriteUInt8(&default_constant_iv_size));
439  RCHECK(default_constant_iv_size == 8 || default_constant_iv_size == 16);
440  RCHECK(buffer->ReadWriteVector(&default_constant_iv,
441  default_constant_iv_size));
442  } else {
443  RCHECK(default_per_sample_iv_size == 8 ||
444  default_per_sample_iv_size == 16);
445  RCHECK(default_constant_iv.empty());
446  }
447  } else {
448  // Expect |default_is_protected| to be 0, i.e. not protected. Other values
449  // of |default_is_protected| is not supported.
450  RCHECK(default_is_protected == 0);
451  RCHECK(default_per_sample_iv_size == 0);
452  RCHECK(default_constant_iv.empty());
453  }
454  return true;
455 }
456 
457 uint32_t TrackEncryption::ComputeSizeInternal() {
458  return HeaderSize() + sizeof(uint32_t) + kCencKeyIdSize +
459  (default_constant_iv.empty() ? 0 : (sizeof(uint8_t) +
460  default_constant_iv.size()));
461 }
462 
463 SchemeInfo::SchemeInfo() {}
464 SchemeInfo::~SchemeInfo() {}
465 FourCC SchemeInfo::BoxType() const { return FOURCC_schi; }
466 
467 bool SchemeInfo::ReadWriteInternal(BoxBuffer* buffer) {
468  RCHECK(ReadWriteHeaderInternal(buffer) && buffer->PrepareChildren() &&
469  buffer->ReadWriteChild(&track_encryption));
470  return true;
471 }
472 
473 uint32_t SchemeInfo::ComputeSizeInternal() {
474  return HeaderSize() + track_encryption.ComputeSize();
475 }
476 
477 ProtectionSchemeInfo::ProtectionSchemeInfo() {}
478 ProtectionSchemeInfo::~ProtectionSchemeInfo() {}
479 FourCC ProtectionSchemeInfo::BoxType() const { return FOURCC_sinf; }
480 
481 bool ProtectionSchemeInfo::ReadWriteInternal(BoxBuffer* buffer) {
482  RCHECK(ReadWriteHeaderInternal(buffer) &&
483  buffer->PrepareChildren() &&
484  buffer->ReadWriteChild(&format) &&
485  buffer->ReadWriteChild(&type));
486  RCHECK(type.type == FOURCC_cenc || type.type == FOURCC_cbc1 ||
487  type.type == FOURCC_cens || type.type == FOURCC_cbcs);
488  RCHECK(buffer->ReadWriteChild(&info));
489  // Other protection schemes are silently ignored. Since the protection scheme
490  // type can't be determined until this box is opened, we return 'true' for
491  // non-CENC protection scheme types. It is the parent box's responsibility to
492  // ensure that this scheme type is a supported one.
493  return true;
494 }
495 
496 uint32_t ProtectionSchemeInfo::ComputeSizeInternal() {
497  // Skip sinf box if it is not initialized.
498  if (format.format == FOURCC_NULL)
499  return 0;
500  return HeaderSize() + format.ComputeSize() + type.ComputeSize() +
501  info.ComputeSize();
502 }
503 
504 MovieHeader::MovieHeader()
505  : creation_time(0),
506  modification_time(0),
507  timescale(0),
508  duration(0),
509  rate(1 << 16),
510  volume(1 << 8),
511  next_track_id(0) {}
512 MovieHeader::~MovieHeader() {}
513 FourCC MovieHeader::BoxType() const { return FOURCC_mvhd; }
514 
515 bool MovieHeader::ReadWriteInternal(BoxBuffer* buffer) {
516  RCHECK(ReadWriteHeaderInternal(buffer));
517 
518  size_t num_bytes = (version == 1) ? sizeof(uint64_t) : sizeof(uint32_t);
519  RCHECK(buffer->ReadWriteUInt64NBytes(&creation_time, num_bytes) &&
520  buffer->ReadWriteUInt64NBytes(&modification_time, num_bytes) &&
521  buffer->ReadWriteUInt32(&timescale) &&
522  buffer->ReadWriteUInt64NBytes(&duration, num_bytes));
523 
524  std::vector<uint8_t> matrix(kUnityMatrix,
525  kUnityMatrix + arraysize(kUnityMatrix));
526  RCHECK(buffer->ReadWriteInt32(&rate) &&
527  buffer->ReadWriteInt16(&volume) &&
528  buffer->IgnoreBytes(10) && // reserved
529  buffer->ReadWriteVector(&matrix, matrix.size()) &&
530  buffer->IgnoreBytes(24) && // predefined zero
531  buffer->ReadWriteUInt32(&next_track_id));
532  return true;
533 }
534 
535 uint32_t MovieHeader::ComputeSizeInternal() {
536  version = IsFitIn32Bits(creation_time, modification_time, duration) ? 0 : 1;
537  return HeaderSize() + sizeof(uint32_t) * (1 + version) * 3 +
538  sizeof(timescale) + sizeof(rate) + sizeof(volume) +
539  sizeof(next_track_id) + sizeof(kUnityMatrix) + 10 +
540  24; // 10 bytes reserved, 24 bytes predefined.
541 }
542 
543 TrackHeader::TrackHeader()
544  : creation_time(0),
545  modification_time(0),
546  track_id(0),
547  duration(0),
548  layer(0),
549  alternate_group(0),
550  volume(-1),
551  width(0),
552  height(0) {
553  flags = kTrackEnabled | kTrackInMovie;
554 }
555 TrackHeader::~TrackHeader() {}
556 FourCC TrackHeader::BoxType() const { return FOURCC_tkhd; }
557 
558 bool TrackHeader::ReadWriteInternal(BoxBuffer* buffer) {
559  RCHECK(ReadWriteHeaderInternal(buffer));
560 
561  size_t num_bytes = (version == 1) ? sizeof(uint64_t) : sizeof(uint32_t);
562  RCHECK(buffer->ReadWriteUInt64NBytes(&creation_time, num_bytes) &&
563  buffer->ReadWriteUInt64NBytes(&modification_time, num_bytes) &&
564  buffer->ReadWriteUInt32(&track_id) &&
565  buffer->IgnoreBytes(4) && // reserved
566  buffer->ReadWriteUInt64NBytes(&duration, num_bytes));
567 
568  if (!buffer->Reading()) {
569  // Set default value for volume, if track is audio, 0x100 else 0.
570  if (volume == -1)
571  volume = (width != 0 && height != 0) ? 0 : 0x100;
572  }
573  std::vector<uint8_t> matrix(kUnityMatrix,
574  kUnityMatrix + arraysize(kUnityMatrix));
575  RCHECK(buffer->IgnoreBytes(8) && // reserved
576  buffer->ReadWriteInt16(&layer) &&
577  buffer->ReadWriteInt16(&alternate_group) &&
578  buffer->ReadWriteInt16(&volume) &&
579  buffer->IgnoreBytes(2) && // reserved
580  buffer->ReadWriteVector(&matrix, matrix.size()) &&
581  buffer->ReadWriteUInt32(&width) &&
582  buffer->ReadWriteUInt32(&height));
583  return true;
584 }
585 
586 uint32_t TrackHeader::ComputeSizeInternal() {
587  version = IsFitIn32Bits(creation_time, modification_time, duration) ? 0 : 1;
588  return HeaderSize() + sizeof(track_id) +
589  sizeof(uint32_t) * (1 + version) * 3 + sizeof(layer) +
590  sizeof(alternate_group) + sizeof(volume) + sizeof(width) +
591  sizeof(height) + sizeof(kUnityMatrix) + 14; // 14 bytes reserved.
592 }
593 
594 SampleDescription::SampleDescription() : type(kInvalid) {}
595 SampleDescription::~SampleDescription() {}
596 FourCC SampleDescription::BoxType() const { return FOURCC_stsd; }
597 
598 bool SampleDescription::ReadWriteInternal(BoxBuffer* buffer) {
599  uint32_t count = 0;
600  switch (type) {
601  case kVideo:
602  count = video_entries.size();
603  break;
604  case kAudio:
605  count = audio_entries.size();
606  break;
607  case kText:
608  count = text_entries.size();
609  break;
610  default:
611  NOTIMPLEMENTED() << "SampleDecryption type " << type
612  << " is not handled. Skipping.";
613  }
614  RCHECK(ReadWriteHeaderInternal(buffer) &&
615  buffer->ReadWriteUInt32(&count));
616 
617  if (buffer->Reading()) {
618  BoxReader* reader = buffer->reader();
619  DCHECK(reader);
620  video_entries.clear();
621  audio_entries.clear();
622  // Note: this value is preset before scanning begins. See comments in the
623  // Parse(Media*) function.
624  if (type == kVideo) {
625  RCHECK(reader->ReadAllChildren(&video_entries));
626  RCHECK(video_entries.size() == count);
627  } else if (type == kAudio) {
628  RCHECK(reader->ReadAllChildren(&audio_entries));
629  RCHECK(audio_entries.size() == count);
630  } else if (type == kText) {
631  RCHECK(reader->ReadAllChildren(&text_entries));
632  RCHECK(text_entries.size() == count);
633  }
634  } else {
635  DCHECK_LT(0u, count);
636  if (type == kVideo) {
637  for (uint32_t i = 0; i < count; ++i)
638  RCHECK(buffer->ReadWriteChild(&video_entries[i]));
639  } else if (type == kAudio) {
640  for (uint32_t i = 0; i < count; ++i)
641  RCHECK(buffer->ReadWriteChild(&audio_entries[i]));
642  } else if (type == kText) {
643  for (uint32_t i = 0; i < count; ++i)
644  RCHECK(buffer->ReadWriteChild(&text_entries[i]));
645  } else {
646  NOTIMPLEMENTED();
647  }
648  }
649  return true;
650 }
651 
652 uint32_t SampleDescription::ComputeSizeInternal() {
653  uint32_t box_size = HeaderSize() + sizeof(uint32_t);
654  if (type == kVideo) {
655  for (uint32_t i = 0; i < video_entries.size(); ++i)
656  box_size += video_entries[i].ComputeSize();
657  } else if (type == kAudio) {
658  for (uint32_t i = 0; i < audio_entries.size(); ++i)
659  box_size += audio_entries[i].ComputeSize();
660  } else if (type == kText) {
661  for (uint32_t i = 0; i < text_entries.size(); ++i)
662  box_size += text_entries[i].ComputeSize();
663  }
664  return box_size;
665 }
666 
667 DecodingTimeToSample::DecodingTimeToSample() {}
668 DecodingTimeToSample::~DecodingTimeToSample() {}
669 FourCC DecodingTimeToSample::BoxType() const { return FOURCC_stts; }
670 
671 bool DecodingTimeToSample::ReadWriteInternal(BoxBuffer* buffer) {
672  uint32_t count = decoding_time.size();
673  RCHECK(ReadWriteHeaderInternal(buffer) &&
674  buffer->ReadWriteUInt32(&count));
675 
676  decoding_time.resize(count);
677  for (uint32_t i = 0; i < count; ++i) {
678  RCHECK(buffer->ReadWriteUInt32(&decoding_time[i].sample_count) &&
679  buffer->ReadWriteUInt32(&decoding_time[i].sample_delta));
680  }
681  return true;
682 }
683 
684 uint32_t DecodingTimeToSample::ComputeSizeInternal() {
685  return HeaderSize() + sizeof(uint32_t) +
686  sizeof(DecodingTime) * decoding_time.size();
687 }
688 
689 CompositionTimeToSample::CompositionTimeToSample() {}
690 CompositionTimeToSample::~CompositionTimeToSample() {}
691 FourCC CompositionTimeToSample::BoxType() const { return FOURCC_ctts; }
692 
693 bool CompositionTimeToSample::ReadWriteInternal(BoxBuffer* buffer) {
694  uint32_t count = composition_offset.size();
695  if (!buffer->Reading()) {
696  // Determine whether version 0 or version 1 should be used.
697  // Use version 0 if possible, use version 1 if there is a negative
698  // sample_offset value.
699  version = 0;
700  for (uint32_t i = 0; i < count; ++i) {
701  if (composition_offset[i].sample_offset < 0) {
702  version = 1;
703  break;
704  }
705  }
706  }
707 
708  RCHECK(ReadWriteHeaderInternal(buffer) &&
709  buffer->ReadWriteUInt32(&count));
710 
711  composition_offset.resize(count);
712  for (uint32_t i = 0; i < count; ++i) {
713  RCHECK(buffer->ReadWriteUInt32(&composition_offset[i].sample_count));
714 
715  if (version == 0) {
716  uint32_t sample_offset = composition_offset[i].sample_offset;
717  RCHECK(buffer->ReadWriteUInt32(&sample_offset));
718  composition_offset[i].sample_offset = sample_offset;
719  } else {
720  int32_t sample_offset = composition_offset[i].sample_offset;
721  RCHECK(buffer->ReadWriteInt32(&sample_offset));
722  composition_offset[i].sample_offset = sample_offset;
723  }
724  }
725  return true;
726 }
727 
728 uint32_t CompositionTimeToSample::ComputeSizeInternal() {
729  // This box is optional. Skip it if it is empty.
730  if (composition_offset.empty())
731  return 0;
732  // Structure CompositionOffset contains |sample_offset| (uint32_t) and
733  // |sample_offset| (int64_t). The actual size of |sample_offset| is
734  // 4 bytes (uint32_t for version 0 and int32_t for version 1).
735  const uint32_t kCompositionOffsetSize = sizeof(uint32_t) * 2;
736  return HeaderSize() + sizeof(uint32_t) +
737  kCompositionOffsetSize * composition_offset.size();
738 }
739 
740 SampleToChunk::SampleToChunk() {}
741 SampleToChunk::~SampleToChunk() {}
742 FourCC SampleToChunk::BoxType() const { return FOURCC_stsc; }
743 
744 bool SampleToChunk::ReadWriteInternal(BoxBuffer* buffer) {
745  uint32_t count = chunk_info.size();
746  RCHECK(ReadWriteHeaderInternal(buffer) &&
747  buffer->ReadWriteUInt32(&count));
748 
749  chunk_info.resize(count);
750  for (uint32_t i = 0; i < count; ++i) {
751  RCHECK(buffer->ReadWriteUInt32(&chunk_info[i].first_chunk) &&
752  buffer->ReadWriteUInt32(&chunk_info[i].samples_per_chunk) &&
753  buffer->ReadWriteUInt32(&chunk_info[i].sample_description_index));
754  // first_chunk values are always increasing.
755  RCHECK(i == 0 ? chunk_info[i].first_chunk == 1
756  : chunk_info[i].first_chunk > chunk_info[i - 1].first_chunk);
757  }
758  return true;
759 }
760 
761 uint32_t SampleToChunk::ComputeSizeInternal() {
762  return HeaderSize() + sizeof(uint32_t) +
763  sizeof(ChunkInfo) * chunk_info.size();
764 }
765 
766 SampleSize::SampleSize() : sample_size(0), sample_count(0) {}
767 SampleSize::~SampleSize() {}
768 FourCC SampleSize::BoxType() const { return FOURCC_stsz; }
769 
770 bool SampleSize::ReadWriteInternal(BoxBuffer* buffer) {
771  RCHECK(ReadWriteHeaderInternal(buffer) &&
772  buffer->ReadWriteUInt32(&sample_size) &&
773  buffer->ReadWriteUInt32(&sample_count));
774 
775  if (sample_size == 0) {
776  if (buffer->Reading())
777  sizes.resize(sample_count);
778  else
779  DCHECK(sample_count == sizes.size());
780  for (uint32_t i = 0; i < sample_count; ++i)
781  RCHECK(buffer->ReadWriteUInt32(&sizes[i]));
782  }
783  return true;
784 }
785 
786 uint32_t SampleSize::ComputeSizeInternal() {
787  return HeaderSize() + sizeof(sample_size) + sizeof(sample_count) +
788  (sample_size == 0 ? sizeof(uint32_t) * sizes.size() : 0);
789 }
790 
791 CompactSampleSize::CompactSampleSize() : field_size(0) {}
792 CompactSampleSize::~CompactSampleSize() {}
793 FourCC CompactSampleSize::BoxType() const { return FOURCC_stz2; }
794 
795 bool CompactSampleSize::ReadWriteInternal(BoxBuffer* buffer) {
796  uint32_t sample_count = sizes.size();
797  RCHECK(ReadWriteHeaderInternal(buffer) &&
798  buffer->IgnoreBytes(3) &&
799  buffer->ReadWriteUInt8(&field_size) &&
800  buffer->ReadWriteUInt32(&sample_count));
801 
802  // Reserve one more entry if field size is 4 bits.
803  sizes.resize(sample_count + (field_size == 4 ? 1 : 0), 0);
804  switch (field_size) {
805  case 4:
806  for (uint32_t i = 0; i < sample_count; i += 2) {
807  if (buffer->Reading()) {
808  uint8_t size = 0;
809  RCHECK(buffer->ReadWriteUInt8(&size));
810  sizes[i] = size >> 4;
811  sizes[i + 1] = size & 0x0F;
812  } else {
813  DCHECK_LT(sizes[i], 16u);
814  DCHECK_LT(sizes[i + 1], 16u);
815  uint8_t size = (sizes[i] << 4) | sizes[i + 1];
816  RCHECK(buffer->ReadWriteUInt8(&size));
817  }
818  }
819  break;
820  case 8:
821  for (uint32_t i = 0; i < sample_count; ++i) {
822  uint8_t size = sizes[i];
823  RCHECK(buffer->ReadWriteUInt8(&size));
824  sizes[i] = size;
825  }
826  break;
827  case 16:
828  for (uint32_t i = 0; i < sample_count; ++i) {
829  uint16_t size = sizes[i];
830  RCHECK(buffer->ReadWriteUInt16(&size));
831  sizes[i] = size;
832  }
833  break;
834  default:
835  RCHECK(false);
836  }
837  sizes.resize(sample_count);
838  return true;
839 }
840 
841 uint32_t CompactSampleSize::ComputeSizeInternal() {
842  return HeaderSize() + sizeof(uint32_t) + sizeof(uint32_t) +
843  (field_size * sizes.size() + 7) / 8;
844 }
845 
846 ChunkOffset::ChunkOffset() {}
847 ChunkOffset::~ChunkOffset() {}
848 FourCC ChunkOffset::BoxType() const { return FOURCC_stco; }
849 
850 bool ChunkOffset::ReadWriteInternal(BoxBuffer* buffer) {
851  uint32_t count = offsets.size();
852  RCHECK(ReadWriteHeaderInternal(buffer) &&
853  buffer->ReadWriteUInt32(&count));
854 
855  offsets.resize(count);
856  for (uint32_t i = 0; i < count; ++i)
857  RCHECK(buffer->ReadWriteUInt64NBytes(&offsets[i], sizeof(uint32_t)));
858  return true;
859 }
860 
861 uint32_t ChunkOffset::ComputeSizeInternal() {
862  return HeaderSize() + sizeof(uint32_t) + sizeof(uint32_t) * offsets.size();
863 }
864 
865 ChunkLargeOffset::ChunkLargeOffset() {}
866 ChunkLargeOffset::~ChunkLargeOffset() {}
867 FourCC ChunkLargeOffset::BoxType() const { return FOURCC_co64; }
868 
869 bool ChunkLargeOffset::ReadWriteInternal(BoxBuffer* buffer) {
870  uint32_t count = offsets.size();
871 
872  if (!buffer->Reading()) {
873  // Switch to ChunkOffset box if it is able to fit in 32 bits offset.
874  if (count == 0 || IsFitIn32Bits(offsets[count - 1])) {
875  ChunkOffset stco;
876  stco.offsets.swap(offsets);
877  DCHECK(buffer->writer());
878  stco.Write(buffer->writer());
879  stco.offsets.swap(offsets);
880  return true;
881  }
882  }
883 
884  RCHECK(ReadWriteHeaderInternal(buffer) &&
885  buffer->ReadWriteUInt32(&count));
886 
887  offsets.resize(count);
888  for (uint32_t i = 0; i < count; ++i)
889  RCHECK(buffer->ReadWriteUInt64(&offsets[i]));
890  return true;
891 }
892 
893 uint32_t ChunkLargeOffset::ComputeSizeInternal() {
894  uint32_t count = offsets.size();
895  int use_large_offset =
896  (count > 0 && !IsFitIn32Bits(offsets[count - 1])) ? 1 : 0;
897  return HeaderSize() + sizeof(count) +
898  sizeof(uint32_t) * (1 + use_large_offset) * offsets.size();
899 }
900 
901 SyncSample::SyncSample() {}
902 SyncSample::~SyncSample() {}
903 FourCC SyncSample::BoxType() const { return FOURCC_stss; }
904 
905 bool SyncSample::ReadWriteInternal(BoxBuffer* buffer) {
906  uint32_t count = sample_number.size();
907  RCHECK(ReadWriteHeaderInternal(buffer) &&
908  buffer->ReadWriteUInt32(&count));
909 
910  sample_number.resize(count);
911  for (uint32_t i = 0; i < count; ++i)
912  RCHECK(buffer->ReadWriteUInt32(&sample_number[i]));
913  return true;
914 }
915 
916 uint32_t SyncSample::ComputeSizeInternal() {
917  // Sync sample box is optional. Skip it if it is empty.
918  if (sample_number.empty())
919  return 0;
920  return HeaderSize() + sizeof(uint32_t) +
921  sizeof(uint32_t) * sample_number.size();
922 }
923 
924 CencSampleEncryptionInfoEntry::CencSampleEncryptionInfoEntry()
925  : is_protected(0),
926  per_sample_iv_size(0),
927  crypt_byte_block(0),
928  skip_byte_block(0) {}
929 CencSampleEncryptionInfoEntry::~CencSampleEncryptionInfoEntry() {};
930 
931 bool CencSampleEncryptionInfoEntry::ReadWrite(BoxBuffer* buffer) {
932  if (!buffer->Reading()) {
933  if (key_id.size() != kCencKeyIdSize) {
934  LOG(WARNING) << "CENC defines key id length of " << kCencKeyIdSize
935  << " bytes; got " << key_id.size()
936  << ". Resized accordingly.";
937  key_id.resize(kCencKeyIdSize);
938  }
939  RCHECK(crypt_byte_block < 16 && skip_byte_block < 16);
940  }
941 
942  RCHECK(buffer->IgnoreBytes(1)); // reserved.
943 
944  uint8_t pattern = crypt_byte_block << 4 | skip_byte_block;
945  RCHECK(buffer->ReadWriteUInt8(&pattern));
946  crypt_byte_block = pattern >> 4;
947  skip_byte_block = pattern & 0x0F;
948 
949  RCHECK(buffer->ReadWriteUInt8(&is_protected) &&
950  buffer->ReadWriteUInt8(&per_sample_iv_size) &&
951  buffer->ReadWriteVector(&key_id, kCencKeyIdSize));
952 
953  if (is_protected == 1) {
954  if (per_sample_iv_size == 0) { // For constant iv.
955  uint8_t constant_iv_size = constant_iv.size();
956  RCHECK(buffer->ReadWriteUInt8(&constant_iv_size));
957  RCHECK(constant_iv_size == 8 || constant_iv_size == 16);
958  RCHECK(buffer->ReadWriteVector(&constant_iv, constant_iv_size));
959  } else {
960  RCHECK(per_sample_iv_size == 8 || per_sample_iv_size == 16);
961  DCHECK(constant_iv.empty());
962  }
963  } else {
964  // Expect |is_protected| to be 0, i.e. not protected. Other values of
965  // |is_protected| is not supported.
966  RCHECK(is_protected == 0);
967  RCHECK(per_sample_iv_size == 0);
968  }
969  return true;
970 }
971 
972 uint32_t CencSampleEncryptionInfoEntry::ComputeSize() const {
973  return sizeof(uint32_t) + kCencKeyIdSize +
974  (constant_iv.empty() ? 0 : (sizeof(uint8_t) + constant_iv.size()));
975 }
976 
977 AudioRollRecoveryEntry::AudioRollRecoveryEntry(): roll_distance(0) {}
978 AudioRollRecoveryEntry::~AudioRollRecoveryEntry() {}
979 
980 bool AudioRollRecoveryEntry::ReadWrite(BoxBuffer* buffer) {
981  RCHECK(buffer->ReadWriteInt16(&roll_distance));
982  return true;
983 }
984 
985 uint32_t AudioRollRecoveryEntry::ComputeSize() const {
986  return sizeof(roll_distance);
987 }
988 
989 SampleGroupDescription::SampleGroupDescription() : grouping_type(0) {}
990 SampleGroupDescription::~SampleGroupDescription() {}
991 FourCC SampleGroupDescription::BoxType() const { return FOURCC_sgpd; }
992 
993 bool SampleGroupDescription::ReadWriteInternal(BoxBuffer* buffer) {
994  RCHECK(ReadWriteHeaderInternal(buffer) &&
995  buffer->ReadWriteUInt32(&grouping_type));
996 
997  switch (grouping_type) {
998  case FOURCC_seig:
999  return ReadWriteEntries(buffer, &cenc_sample_encryption_info_entries);
1000  case FOURCC_roll:
1001  return ReadWriteEntries(buffer, &audio_roll_recovery_entries);
1002  default:
1003  DCHECK(buffer->Reading());
1004  DLOG(WARNING) << "Sample group '" << grouping_type
1005  << "' is not supported.";
1006  return true;
1007  }
1008 }
1009 
1010 template <typename T>
1011 bool SampleGroupDescription::ReadWriteEntries(BoxBuffer* buffer,
1012  std::vector<T>* entries) {
1013  uint32_t default_length = 0;
1014  if (!buffer->Reading()) {
1015  DCHECK(!entries->empty());
1016  default_length = (*entries)[0].ComputeSize();
1017  DCHECK_NE(default_length, 0u);
1018  }
1019  if (version == 1)
1020  RCHECK(buffer->ReadWriteUInt32(&default_length));
1021  if (version >= 2) {
1022  NOTIMPLEMENTED() << "Unsupported SampleGroupDescriptionBox 'sgpd' version "
1023  << static_cast<int>(version);
1024  return false;
1025  }
1026 
1027  uint32_t count = entries->size();
1028  RCHECK(buffer->ReadWriteUInt32(&count));
1029  RCHECK(count != 0);
1030  entries->resize(count);
1031 
1032  for (T& entry : *entries) {
1033  if (version == 1) {
1034  uint32_t description_length = default_length;
1035  if (buffer->Reading() && default_length == 0)
1036  RCHECK(buffer->ReadWriteUInt32(&description_length));
1037  RCHECK(entry.ReadWrite(buffer));
1038  RCHECK(entry.ComputeSize() == description_length);
1039  } else {
1040  RCHECK(entry.ReadWrite(buffer));
1041  }
1042  }
1043  return true;
1044 }
1045 
1046 uint32_t SampleGroupDescription::ComputeSizeInternal() {
1047  // Version 0 is obsoleted, so always generate version 1 box.
1048  version = 1;
1049  size_t entries_size = 0;
1050  switch (grouping_type) {
1051  case FOURCC_seig:
1052  for (const auto& entry : cenc_sample_encryption_info_entries)
1053  entries_size += entry.ComputeSize();
1054  break;
1055  case FOURCC_roll:
1056  for (const auto& entry : audio_roll_recovery_entries)
1057  entries_size += entry.ComputeSize();
1058  break;
1059  }
1060  // This box is optional. Skip it if it is not used.
1061  if (entries_size == 0)
1062  return 0;
1063  return HeaderSize() + sizeof(grouping_type) +
1064  (version == 1 ? sizeof(uint32_t) : 0) + sizeof(uint32_t) +
1065  entries_size;
1066 }
1067 
1068 SampleToGroup::SampleToGroup() : grouping_type(0), grouping_type_parameter(0) {}
1069 SampleToGroup::~SampleToGroup() {}
1070 FourCC SampleToGroup::BoxType() const { return FOURCC_sbgp; }
1071 
1072 bool SampleToGroup::ReadWriteInternal(BoxBuffer* buffer) {
1073  RCHECK(ReadWriteHeaderInternal(buffer) &&
1074  buffer->ReadWriteUInt32(&grouping_type));
1075  if (version == 1)
1076  RCHECK(buffer->ReadWriteUInt32(&grouping_type_parameter));
1077 
1078  if (grouping_type != FOURCC_seig && grouping_type != FOURCC_roll) {
1079  DCHECK(buffer->Reading());
1080  DLOG(WARNING) << "Sample group "
1081  << FourCCToString(static_cast<FourCC>(grouping_type))
1082  << " is not supported.";
1083  return true;
1084  }
1085 
1086  uint32_t count = entries.size();
1087  RCHECK(buffer->ReadWriteUInt32(&count));
1088  entries.resize(count);
1089  for (uint32_t i = 0; i < count; ++i) {
1090  RCHECK(buffer->ReadWriteUInt32(&entries[i].sample_count) &&
1091  buffer->ReadWriteUInt32(&entries[i].group_description_index));
1092  }
1093  return true;
1094 }
1095 
1096 uint32_t SampleToGroup::ComputeSizeInternal() {
1097  // This box is optional. Skip it if it is not used.
1098  if (entries.empty())
1099  return 0;
1100  return HeaderSize() + sizeof(grouping_type) +
1101  (version == 1 ? sizeof(grouping_type_parameter) : 0) +
1102  sizeof(uint32_t) + entries.size() * sizeof(entries[0]);
1103 }
1104 
1105 SampleTable::SampleTable() {}
1106 SampleTable::~SampleTable() {}
1107 FourCC SampleTable::BoxType() const { return FOURCC_stbl; }
1108 
1109 bool SampleTable::ReadWriteInternal(BoxBuffer* buffer) {
1110  RCHECK(ReadWriteHeaderInternal(buffer) &&
1111  buffer->PrepareChildren() &&
1112  buffer->ReadWriteChild(&description) &&
1113  buffer->ReadWriteChild(&decoding_time_to_sample) &&
1114  buffer->TryReadWriteChild(&composition_time_to_sample) &&
1115  buffer->ReadWriteChild(&sample_to_chunk));
1116 
1117  if (buffer->Reading()) {
1118  BoxReader* reader = buffer->reader();
1119  DCHECK(reader);
1120 
1121  // Either SampleSize or CompactSampleSize must present.
1122  if (reader->ChildExist(&sample_size)) {
1123  RCHECK(reader->ReadChild(&sample_size));
1124  } else {
1125  CompactSampleSize compact_sample_size;
1126  RCHECK(reader->ReadChild(&compact_sample_size));
1127  sample_size.sample_size = 0;
1128  sample_size.sample_count = compact_sample_size.sizes.size();
1129  sample_size.sizes.swap(compact_sample_size.sizes);
1130  }
1131 
1132  // Either ChunkOffset or ChunkLargeOffset must present.
1133  if (reader->ChildExist(&chunk_large_offset)) {
1134  RCHECK(reader->ReadChild(&chunk_large_offset));
1135  } else {
1136  ChunkOffset chunk_offset;
1137  RCHECK(reader->ReadChild(&chunk_offset));
1138  chunk_large_offset.offsets.swap(chunk_offset.offsets);
1139  }
1140  } else {
1141  RCHECK(buffer->ReadWriteChild(&sample_size) &&
1142  buffer->ReadWriteChild(&chunk_large_offset));
1143  }
1144  RCHECK(buffer->TryReadWriteChild(&sync_sample));
1145  if (buffer->Reading()) {
1146  RCHECK(buffer->reader()->TryReadChildren(&sample_group_descriptions) &&
1147  buffer->reader()->TryReadChildren(&sample_to_groups));
1148  } else {
1149  for (auto& sample_group_description : sample_group_descriptions)
1150  RCHECK(buffer->ReadWriteChild(&sample_group_description));
1151  for (auto& sample_to_group : sample_to_groups)
1152  RCHECK(buffer->ReadWriteChild(&sample_to_group));
1153  }
1154  return true;
1155 }
1156 
1157 uint32_t SampleTable::ComputeSizeInternal() {
1158  uint32_t box_size =
1159  HeaderSize() + description.ComputeSize() +
1160  decoding_time_to_sample.ComputeSize() +
1161  composition_time_to_sample.ComputeSize() + sample_to_chunk.ComputeSize() +
1162  sample_size.ComputeSize() + chunk_large_offset.ComputeSize() +
1163  sync_sample.ComputeSize();
1164  for (auto& sample_group_description : sample_group_descriptions)
1165  box_size += sample_group_description.ComputeSize();
1166  for (auto& sample_to_group : sample_to_groups)
1167  box_size += sample_to_group.ComputeSize();
1168  return box_size;
1169 }
1170 
1171 EditList::EditList() {}
1172 EditList::~EditList() {}
1173 FourCC EditList::BoxType() const { return FOURCC_elst; }
1174 
1175 bool EditList::ReadWriteInternal(BoxBuffer* buffer) {
1176  uint32_t count = edits.size();
1177  RCHECK(ReadWriteHeaderInternal(buffer) && buffer->ReadWriteUInt32(&count));
1178  edits.resize(count);
1179 
1180  size_t num_bytes = (version == 1) ? sizeof(uint64_t) : sizeof(uint32_t);
1181  for (uint32_t i = 0; i < count; ++i) {
1182  RCHECK(
1183  buffer->ReadWriteUInt64NBytes(&edits[i].segment_duration, num_bytes) &&
1184  buffer->ReadWriteInt64NBytes(&edits[i].media_time, num_bytes) &&
1185  buffer->ReadWriteInt16(&edits[i].media_rate_integer) &&
1186  buffer->ReadWriteInt16(&edits[i].media_rate_fraction));
1187  }
1188  return true;
1189 }
1190 
1191 uint32_t EditList::ComputeSizeInternal() {
1192  // EditList box is optional. Skip it if it is empty.
1193  if (edits.empty())
1194  return 0;
1195 
1196  version = 0;
1197  for (uint32_t i = 0; i < edits.size(); ++i) {
1198  if (!IsFitIn32Bits(edits[i].segment_duration, edits[i].media_time)) {
1199  version = 1;
1200  break;
1201  }
1202  }
1203  return HeaderSize() + sizeof(uint32_t) +
1204  (sizeof(uint32_t) * (1 + version) * 2 + sizeof(int16_t) * 2) *
1205  edits.size();
1206 }
1207 
1208 Edit::Edit() {}
1209 Edit::~Edit() {}
1210 FourCC Edit::BoxType() const { return FOURCC_edts; }
1211 
1212 bool Edit::ReadWriteInternal(BoxBuffer* buffer) {
1213  return ReadWriteHeaderInternal(buffer) &&
1214  buffer->PrepareChildren() &&
1215  buffer->ReadWriteChild(&list);
1216 }
1217 
1218 uint32_t Edit::ComputeSizeInternal() {
1219  // Edit box is optional. Skip it if it is empty.
1220  if (list.edits.empty())
1221  return 0;
1222  return HeaderSize() + list.ComputeSize();
1223 }
1224 
1225 HandlerReference::HandlerReference() : handler_type(FOURCC_NULL) {}
1226 HandlerReference::~HandlerReference() {}
1227 FourCC HandlerReference::BoxType() const { return FOURCC_hdlr; }
1228 
1229 bool HandlerReference::ReadWriteInternal(BoxBuffer* buffer) {
1230  std::vector<uint8_t> handler_name;
1231  if (!buffer->Reading()) {
1232  switch (handler_type) {
1233  case FOURCC_vide:
1234  handler_name.assign(kVideoHandlerName,
1235  kVideoHandlerName + arraysize(kVideoHandlerName));
1236  break;
1237  case FOURCC_soun:
1238  handler_name.assign(kAudioHandlerName,
1239  kAudioHandlerName + arraysize(kAudioHandlerName));
1240  break;
1241  case FOURCC_text:
1242  handler_name.assign(kTextHandlerName,
1243  kTextHandlerName + arraysize(kTextHandlerName));
1244  break;
1245  case FOURCC_ID32:
1246  break;
1247  default:
1248  NOTIMPLEMENTED();
1249  return false;
1250  }
1251  }
1252  RCHECK(ReadWriteHeaderInternal(buffer) &&
1253  buffer->IgnoreBytes(4) && // predefined.
1254  buffer->ReadWriteFourCC(&handler_type));
1255  if (!buffer->Reading()) {
1256  RCHECK(buffer->IgnoreBytes(12) && // reserved.
1257  buffer->ReadWriteVector(&handler_name, handler_name.size()));
1258  }
1259  return true;
1260 }
1261 
1262 uint32_t HandlerReference::ComputeSizeInternal() {
1263  uint32_t box_size = HeaderSize() + kFourCCSize + 16; // 16 bytes Reserved
1264  switch (handler_type) {
1265  case FOURCC_vide:
1266  box_size += sizeof(kVideoHandlerName);
1267  break;
1268  case FOURCC_soun:
1269  box_size += sizeof(kAudioHandlerName);
1270  break;
1271  case FOURCC_text:
1272  box_size += sizeof(kTextHandlerName);
1273  break;
1274  case FOURCC_ID32:
1275  break;
1276  default:
1277  NOTIMPLEMENTED();
1278  }
1279  return box_size;
1280 }
1281 
1282 bool Language::ReadWrite(BoxBuffer* buffer) {
1283  if (buffer->Reading()) {
1284  // Read language codes into temp first then use BitReader to read the
1285  // values. ISO-639-2/T language code: unsigned int(5)[3] language (2 bytes).
1286  std::vector<uint8_t> temp;
1287  RCHECK(buffer->ReadWriteVector(&temp, 2));
1288 
1289  BitReader bit_reader(&temp[0], 2);
1290  bit_reader.SkipBits(1);
1291  char language[3];
1292  for (int i = 0; i < 3; ++i) {
1293  CHECK(bit_reader.ReadBits(5, &language[i]));
1294  language[i] += 0x60;
1295  }
1296  code.assign(language, 3);
1297  } else {
1298  // Set up default language if it is not set.
1299  const char kUndefinedLanguage[] = "und";
1300  if (code.empty())
1301  code = kUndefinedLanguage;
1302  DCHECK_EQ(code.size(), 3u);
1303 
1304  // Lang format: bit(1) pad, unsigned int(5)[3] language.
1305  uint16_t lang = 0;
1306  for (int i = 0; i < 3; ++i)
1307  lang |= (code[i] - 0x60) << ((2 - i) * 5);
1308  RCHECK(buffer->ReadWriteUInt16(&lang));
1309  }
1310  return true;
1311 }
1312 
1313 uint32_t Language::ComputeSize() const {
1314  // ISO-639-2/T language code: unsigned int(5)[3] language (2 bytes).
1315  return 2;
1316 }
1317 
1318 bool PrivFrame::ReadWrite(BoxBuffer* buffer) {
1319  FourCC fourcc = FOURCC_PRIV;
1320  RCHECK(buffer->ReadWriteFourCC(&fourcc));
1321  if (fourcc != FOURCC_PRIV) {
1322  VLOG(1) << "Skip unrecognized id3 frame during read: "
1323  << FourCCToString(fourcc);
1324  return true;
1325  }
1326 
1327  uint32_t frame_size = owner.size() + 1 + value.size();
1328  // size should be encoded as synchsafe integer, which is not support here.
1329  // We don't expect frame_size to be larger than 0x7F. Synchsafe integers less
1330  // than 0x7F is encoded in the same way as normal integer.
1331  DCHECK_LT(frame_size, 0x7Fu);
1332  uint16_t flags = 0;
1333  RCHECK(buffer->ReadWriteUInt32(&frame_size) &&
1334  buffer->ReadWriteUInt16(&flags));
1335 
1336  if (buffer->Reading()) {
1337  std::string str;
1338  RCHECK(buffer->ReadWriteString(&str, frame_size));
1339  // |owner| is null terminated.
1340  size_t pos = str.find('\0');
1341  RCHECK(pos < str.size());
1342  owner = str.substr(0, pos);
1343  value = str.substr(pos + 1);
1344  } else {
1345  uint8_t byte = 0; // Null terminating byte between owner and value.
1346  RCHECK(buffer->ReadWriteString(&owner, owner.size()) &&
1347  buffer->ReadWriteUInt8(&byte) &&
1348  buffer->ReadWriteString(&value, value.size()));
1349  }
1350  return true;
1351 }
1352 
1353 uint32_t PrivFrame::ComputeSize() const {
1354  if (owner.empty() && value.empty())
1355  return 0;
1356  const uint32_t kFourCCSize = 4;
1357  return kFourCCSize + sizeof(uint32_t) + sizeof(uint16_t) + owner.size() + 1 +
1358  value.size();
1359 }
1360 
1361 ID3v2::ID3v2() {}
1362 ID3v2::~ID3v2() {}
1363 
1364 FourCC ID3v2::BoxType() const { return FOURCC_ID32; }
1365 
1366 bool ID3v2::ReadWriteInternal(BoxBuffer* buffer) {
1367  RCHECK(ReadWriteHeaderInternal(buffer) &&
1368  language.ReadWrite(buffer));
1369 
1370  // Read/Write ID3v2 header
1371  std::string id3v2_identifier = kID3v2Identifier;
1372  uint16_t version = kID3v2Version;
1373  // We only support PrivateFrame in ID3.
1374  uint32_t data_size = private_frame.ComputeSize();
1375  // size should be encoded as synchsafe integer, which is not support here.
1376  // We don't expect data_size to be larger than 0x7F. Synchsafe integers less
1377  // than 0x7F is encoded in the same way as normal integer.
1378  DCHECK_LT(data_size, 0x7Fu);
1379  uint8_t flags = 0;
1380  RCHECK(buffer->ReadWriteString(&id3v2_identifier, id3v2_identifier.size()) &&
1381  buffer->ReadWriteUInt16(&version) &&
1382  buffer->ReadWriteUInt8(&flags) &&
1383  buffer->ReadWriteUInt32(&data_size));
1384 
1385  RCHECK(private_frame.ReadWrite(buffer));
1386  return true;
1387 }
1388 
1389 uint32_t ID3v2::ComputeSizeInternal() {
1390  uint32_t private_frame_size = private_frame.ComputeSize();
1391  // Skip ID3v2 box generation if there is no private frame.
1392  return private_frame_size == 0 ? 0 : HeaderSize() + language.ComputeSize() +
1393  kID3v2HeaderSize +
1394  private_frame_size;
1395 }
1396 
1397 Metadata::Metadata() {}
1398 Metadata::~Metadata() {}
1399 
1400 FourCC Metadata::BoxType() const {
1401  return FOURCC_meta;
1402 }
1403 
1404 bool Metadata::ReadWriteInternal(BoxBuffer* buffer) {
1405  RCHECK(ReadWriteHeaderInternal(buffer) &&
1406  buffer->PrepareChildren() &&
1407  buffer->ReadWriteChild(&handler) &&
1408  buffer->TryReadWriteChild(&id3v2));
1409  return true;
1410 }
1411 
1412 uint32_t Metadata::ComputeSizeInternal() {
1413  uint32_t id3v2_size = id3v2.ComputeSize();
1414  // Skip metadata box generation if there is no metadata box.
1415  return id3v2_size == 0 ? 0
1416  : HeaderSize() + handler.ComputeSize() + id3v2_size;
1417 }
1418 
1419 CodecConfigurationRecord::CodecConfigurationRecord() : box_type(FOURCC_NULL) {}
1420 CodecConfigurationRecord::~CodecConfigurationRecord() {}
1422  // CodecConfigurationRecord should be parsed according to format recovered in
1423  // VideoSampleEntry. |box_type| is determined dynamically there.
1424  return box_type;
1425 }
1426 
1427 bool CodecConfigurationRecord::ReadWriteInternal(BoxBuffer* buffer) {
1428  RCHECK(ReadWriteHeaderInternal(buffer));
1429  if (buffer->Reading()) {
1430  RCHECK(buffer->ReadWriteVector(&data, buffer->BytesLeft()));
1431  } else {
1432  RCHECK(buffer->ReadWriteVector(&data, data.size()));
1433  }
1434  return true;
1435 }
1436 
1437 uint32_t CodecConfigurationRecord::ComputeSizeInternal() {
1438  if (data.empty())
1439  return 0;
1440  return HeaderSize() + data.size();
1441 }
1442 
1443 PixelAspectRatio::PixelAspectRatio() : h_spacing(0), v_spacing(0) {}
1444 PixelAspectRatio::~PixelAspectRatio() {}
1445 FourCC PixelAspectRatio::BoxType() const { return FOURCC_pasp; }
1446 
1447 bool PixelAspectRatio::ReadWriteInternal(BoxBuffer* buffer) {
1448  RCHECK(ReadWriteHeaderInternal(buffer) &&
1449  buffer->ReadWriteUInt32(&h_spacing) &&
1450  buffer->ReadWriteUInt32(&v_spacing));
1451  return true;
1452 }
1453 
1454 uint32_t PixelAspectRatio::ComputeSizeInternal() {
1455  // This box is optional. Skip it if it is not initialized.
1456  if (h_spacing == 0 && v_spacing == 0)
1457  return 0;
1458  // Both values must be positive.
1459  DCHECK(h_spacing != 0 && v_spacing != 0);
1460  return HeaderSize() + sizeof(h_spacing) + sizeof(v_spacing);
1461 }
1462 
1463 VideoSampleEntry::VideoSampleEntry()
1464  : format(FOURCC_NULL), data_reference_index(1), width(0), height(0) {}
1465 
1466 VideoSampleEntry::~VideoSampleEntry() {}
1468  if (format == FOURCC_NULL) {
1469  LOG(ERROR) << "VideoSampleEntry should be parsed according to the "
1470  << "handler type recovered in its Media ancestor.";
1471  }
1472  return format;
1473 }
1474 
1475 bool VideoSampleEntry::ReadWriteInternal(BoxBuffer* buffer) {
1476  std::vector<uint8_t> compressor_name;
1477  if (buffer->Reading()) {
1478  DCHECK(buffer->reader());
1479  format = buffer->reader()->type();
1480  } else {
1481  RCHECK(ReadWriteHeaderInternal(buffer));
1482 
1483  const FourCC actual_format = GetActualFormat();
1484  switch (actual_format) {
1485  case FOURCC_avc1:
1486  compressor_name.assign(
1487  kAvcCompressorName,
1488  kAvcCompressorName + arraysize(kAvcCompressorName));
1489  break;
1490  case FOURCC_hev1:
1491  case FOURCC_hvc1:
1492  compressor_name.assign(
1493  kHevcCompressorName,
1494  kHevcCompressorName + arraysize(kHevcCompressorName));
1495  break;
1496  case FOURCC_vp08:
1497  case FOURCC_vp09:
1498  case FOURCC_vp10:
1499  compressor_name.assign(
1500  kVpcCompressorName,
1501  kVpcCompressorName + arraysize(kVpcCompressorName));
1502  break;
1503  default:
1504  LOG(ERROR) << FourCCToString(actual_format) << " is not supported.";
1505  return false;
1506  }
1507  compressor_name.resize(kCompressorNameSize);
1508  }
1509 
1510  uint32_t video_resolution = kVideoResolution;
1511  uint16_t video_frame_count = kVideoFrameCount;
1512  uint16_t video_depth = kVideoDepth;
1513  int16_t predefined = -1;
1514  RCHECK(buffer->IgnoreBytes(6) && // reserved.
1515  buffer->ReadWriteUInt16(&data_reference_index) &&
1516  buffer->IgnoreBytes(16) && // predefined 0.
1517  buffer->ReadWriteUInt16(&width) &&
1518  buffer->ReadWriteUInt16(&height) &&
1519  buffer->ReadWriteUInt32(&video_resolution) &&
1520  buffer->ReadWriteUInt32(&video_resolution) &&
1521  buffer->IgnoreBytes(4) && // reserved.
1522  buffer->ReadWriteUInt16(&video_frame_count) &&
1523  buffer->ReadWriteVector(&compressor_name, kCompressorNameSize) &&
1524  buffer->ReadWriteUInt16(&video_depth) &&
1525  buffer->ReadWriteInt16(&predefined));
1526 
1527  RCHECK(buffer->PrepareChildren());
1528 
1529  if (format == FOURCC_encv)
1530  RCHECK(buffer->ReadWriteChild(&sinf));
1531 
1532  const FourCC actual_format = GetActualFormat();
1533  switch (actual_format) {
1534  case FOURCC_avc1:
1535  codec_config_record.box_type = FOURCC_avcC;
1536  break;
1537  case FOURCC_hev1:
1538  case FOURCC_hvc1:
1539  codec_config_record.box_type = FOURCC_hvcC;
1540  break;
1541  case FOURCC_vp08:
1542  case FOURCC_vp09:
1543  case FOURCC_vp10:
1544  codec_config_record.box_type = FOURCC_vpcC;
1545  break;
1546  default:
1547  LOG(ERROR) << FourCCToString(actual_format) << " is not supported.";
1548  return false;
1549  }
1550  RCHECK(buffer->ReadWriteChild(&codec_config_record));
1551  RCHECK(buffer->TryReadWriteChild(&pixel_aspect));
1552  return true;
1553 }
1554 
1555 uint32_t VideoSampleEntry::ComputeSizeInternal() {
1556  return HeaderSize() + sizeof(data_reference_index) + sizeof(width) +
1557  sizeof(height) + sizeof(kVideoResolution) * 2 +
1558  sizeof(kVideoFrameCount) + sizeof(kVideoDepth) +
1559  pixel_aspect.ComputeSize() + sinf.ComputeSize() +
1560  codec_config_record.ComputeSize() + kCompressorNameSize + 6 + 4 + 16 +
1561  2; // 6 + 4 bytes reserved, 16 + 2 bytes predefined.
1562 }
1563 
1564 ElementaryStreamDescriptor::ElementaryStreamDescriptor() {}
1565 ElementaryStreamDescriptor::~ElementaryStreamDescriptor() {}
1566 FourCC ElementaryStreamDescriptor::BoxType() const { return FOURCC_esds; }
1567 
1568 bool ElementaryStreamDescriptor::ReadWriteInternal(BoxBuffer* buffer) {
1569  RCHECK(ReadWriteHeaderInternal(buffer));
1570  if (buffer->Reading()) {
1571  std::vector<uint8_t> data;
1572  RCHECK(buffer->ReadWriteVector(&data, buffer->BytesLeft()));
1573  RCHECK(es_descriptor.Parse(data));
1574  if (es_descriptor.IsAAC()) {
1575  RCHECK(aac_audio_specific_config.Parse(
1576  es_descriptor.decoder_specific_info()));
1577  }
1578  } else {
1579  DCHECK(buffer->writer());
1580  es_descriptor.Write(buffer->writer());
1581  }
1582  return true;
1583 }
1584 
1585 uint32_t ElementaryStreamDescriptor::ComputeSizeInternal() {
1586  // This box is optional. Skip it if not initialized.
1587  if (es_descriptor.object_type() == kForbidden)
1588  return 0;
1589  return HeaderSize() + es_descriptor.ComputeSize();
1590 }
1591 
1592 DTSSpecific::DTSSpecific()
1593  : sampling_frequency(0),
1594  max_bitrate(0),
1595  avg_bitrate(0),
1596  pcm_sample_depth(0) {}
1597 DTSSpecific::~DTSSpecific() {}
1598 FourCC DTSSpecific::BoxType() const { return FOURCC_ddts; }
1599 
1600 bool DTSSpecific::ReadWriteInternal(BoxBuffer* buffer) {
1601  RCHECK(ReadWriteHeaderInternal(buffer) &&
1602  buffer->ReadWriteUInt32(&sampling_frequency) &&
1603  buffer->ReadWriteUInt32(&max_bitrate) &&
1604  buffer->ReadWriteUInt32(&avg_bitrate) &&
1605  buffer->ReadWriteUInt8(&pcm_sample_depth));
1606 
1607  if (buffer->Reading()) {
1608  RCHECK(buffer->ReadWriteVector(&extra_data, buffer->BytesLeft()));
1609  } else {
1610  if (extra_data.empty()) {
1611  extra_data.assign(kDdtsExtraData,
1612  kDdtsExtraData + sizeof(kDdtsExtraData));
1613  }
1614  RCHECK(buffer->ReadWriteVector(&extra_data, extra_data.size()));
1615  }
1616  return true;
1617 }
1618 
1619 uint32_t DTSSpecific::ComputeSizeInternal() {
1620  // This box is optional. Skip it if not initialized.
1621  if (sampling_frequency == 0)
1622  return 0;
1623  return HeaderSize() + sizeof(sampling_frequency) + sizeof(max_bitrate) +
1624  sizeof(avg_bitrate) + sizeof(pcm_sample_depth) +
1625  sizeof(kDdtsExtraData);
1626 }
1627 
1628 AC3Specific::AC3Specific() {}
1629 AC3Specific::~AC3Specific() {}
1630 
1631 FourCC AC3Specific::BoxType() const { return FOURCC_dac3; }
1632 
1633 bool AC3Specific::ReadWriteInternal(BoxBuffer* buffer) {
1634  RCHECK(ReadWriteHeaderInternal(buffer) &&
1635  buffer->ReadWriteVector(
1636  &data, buffer->Reading() ? buffer->BytesLeft() : data.size()));
1637  return true;
1638 }
1639 
1640 uint32_t AC3Specific::ComputeSizeInternal() {
1641  // This box is optional. Skip it if not initialized.
1642  if (data.empty())
1643  return 0;
1644  return HeaderSize() + data.size();
1645 }
1646 
1647 EC3Specific::EC3Specific() {}
1648 EC3Specific::~EC3Specific() {}
1649 
1650 FourCC EC3Specific::BoxType() const { return FOURCC_dec3; }
1651 
1652 bool EC3Specific::ReadWriteInternal(BoxBuffer* buffer) {
1653  RCHECK(ReadWriteHeaderInternal(buffer));
1654  uint32_t size = buffer->Reading() ? buffer->BytesLeft() : data.size();
1655  RCHECK(buffer->ReadWriteVector(&data, size));
1656  return true;
1657 }
1658 
1659 uint32_t EC3Specific::ComputeSizeInternal() {
1660  // This box is optional. Skip it if not initialized.
1661  if (data.empty())
1662  return 0;
1663  return HeaderSize() + data.size();
1664 }
1665 
1666 OpusSpecific::OpusSpecific() : preskip(0) {}
1667 OpusSpecific::~OpusSpecific() {}
1668 
1669 FourCC OpusSpecific::BoxType() const { return FOURCC_dOps; }
1670 
1671 bool OpusSpecific::ReadWriteInternal(BoxBuffer* buffer) {
1672  RCHECK(ReadWriteHeaderInternal(buffer));
1673  if (buffer->Reading()) {
1674  std::vector<uint8_t> data;
1675  const int kMinOpusSpecificBoxDataSize = 11;
1676  RCHECK(buffer->BytesLeft() >= kMinOpusSpecificBoxDataSize);
1677  RCHECK(buffer->ReadWriteVector(&data, buffer->BytesLeft()));
1678  preskip = data[2] + (data[3] << 8);
1679 
1680  // https://tools.ietf.org/html/draft-ietf-codec-oggopus-06#section-5
1681  BufferWriter writer;
1682  writer.AppendInt(FOURCC_Opus);
1683  writer.AppendInt(FOURCC_Head);
1684  // The version must always be 1.
1685  const uint8_t kOpusIdentificationHeaderVersion = 1;
1686  data[0] = kOpusIdentificationHeaderVersion;
1687  writer.AppendVector(data);
1688  writer.SwapBuffer(&opus_identification_header);
1689  } else {
1690  // https://tools.ietf.org/html/draft-ietf-codec-oggopus-06#section-5
1691  // The first 8 bytes is "magic signature".
1692  const size_t kOpusMagicSignatureSize = 8u;
1693  DCHECK_GT(opus_identification_header.size(), kOpusMagicSignatureSize);
1694  // https://www.opus-codec.org/docs/opus_in_isobmff.html
1695  // The version field shall be set to 0.
1696  const uint8_t kOpusSpecificBoxVersion = 0;
1697  buffer->writer()->AppendInt(kOpusSpecificBoxVersion);
1698  buffer->writer()->AppendArray(
1699  &opus_identification_header[kOpusMagicSignatureSize + 1],
1700  opus_identification_header.size() - kOpusMagicSignatureSize - 1);
1701  }
1702  return true;
1703 }
1704 
1705 uint32_t OpusSpecific::ComputeSizeInternal() {
1706  // This box is optional. Skip it if not initialized.
1707  if (opus_identification_header.empty())
1708  return 0;
1709  // https://tools.ietf.org/html/draft-ietf-codec-oggopus-06#section-5
1710  // The first 8 bytes is "magic signature".
1711  const size_t kOpusMagicSignatureSize = 8u;
1712  DCHECK_GT(opus_identification_header.size(), kOpusMagicSignatureSize);
1713  return HeaderSize() + opus_identification_header.size() -
1714  kOpusMagicSignatureSize;
1715 }
1716 
1717 AudioSampleEntry::AudioSampleEntry()
1718  : format(FOURCC_NULL),
1719  data_reference_index(1),
1720  channelcount(2),
1721  samplesize(16),
1722  samplerate(0) {}
1723 
1724 AudioSampleEntry::~AudioSampleEntry() {}
1725 
1727  if (format == FOURCC_NULL) {
1728  LOG(ERROR) << "AudioSampleEntry should be parsed according to the "
1729  << "handler type recovered in its Media ancestor.";
1730  }
1731  return format;
1732 }
1733 
1734 bool AudioSampleEntry::ReadWriteInternal(BoxBuffer* buffer) {
1735  if (buffer->Reading()) {
1736  DCHECK(buffer->reader());
1737  format = buffer->reader()->type();
1738  } else {
1739  RCHECK(ReadWriteHeaderInternal(buffer));
1740  }
1741 
1742  // Convert from integer to 16.16 fixed point for writing.
1743  samplerate <<= 16;
1744  RCHECK(buffer->IgnoreBytes(6) && // reserved.
1745  buffer->ReadWriteUInt16(&data_reference_index) &&
1746  buffer->IgnoreBytes(8) && // reserved.
1747  buffer->ReadWriteUInt16(&channelcount) &&
1748  buffer->ReadWriteUInt16(&samplesize) &&
1749  buffer->IgnoreBytes(4) && // predefined.
1750  buffer->ReadWriteUInt32(&samplerate));
1751  // Convert from 16.16 fixed point to integer.
1752  samplerate >>= 16;
1753 
1754  RCHECK(buffer->PrepareChildren());
1755  if (format == FOURCC_enca)
1756  RCHECK(buffer->ReadWriteChild(&sinf));
1757 
1758  RCHECK(buffer->TryReadWriteChild(&esds));
1759  RCHECK(buffer->TryReadWriteChild(&ddts));
1760  RCHECK(buffer->TryReadWriteChild(&dac3));
1761  RCHECK(buffer->TryReadWriteChild(&dec3));
1762  RCHECK(buffer->TryReadWriteChild(&dops));
1763  return true;
1764 }
1765 
1766 uint32_t AudioSampleEntry::ComputeSizeInternal() {
1767  return HeaderSize() + sizeof(data_reference_index) + sizeof(channelcount) +
1768  sizeof(samplesize) + sizeof(samplerate) + sinf.ComputeSize() +
1769  esds.ComputeSize() + ddts.ComputeSize() + dac3.ComputeSize() +
1770  dec3.ComputeSize() + dops.ComputeSize() +
1771  6 + 8 + // 6 + 8 bytes reserved.
1772  4; // 4 bytes predefined.
1773 }
1774 
1775 WebVTTConfigurationBox::WebVTTConfigurationBox() {}
1776 WebVTTConfigurationBox::~WebVTTConfigurationBox() {}
1777 
1779  return FOURCC_vttC;
1780 }
1781 
1782 bool WebVTTConfigurationBox::ReadWriteInternal(BoxBuffer* buffer) {
1783  RCHECK(ReadWriteHeaderInternal(buffer));
1784  return buffer->ReadWriteString(
1785  &config,
1786  buffer->Reading() ? buffer->BytesLeft() : config.size());
1787 }
1788 
1789 uint32_t WebVTTConfigurationBox::ComputeSizeInternal() {
1790  return HeaderSize() + config.size();
1791 }
1792 
1793 WebVTTSourceLabelBox::WebVTTSourceLabelBox() {}
1794 WebVTTSourceLabelBox::~WebVTTSourceLabelBox() {}
1795 
1797  return FOURCC_vlab;
1798 }
1799 
1800 bool WebVTTSourceLabelBox::ReadWriteInternal(BoxBuffer* buffer) {
1801  RCHECK(ReadWriteHeaderInternal(buffer));
1802  return buffer->ReadWriteString(&source_label, buffer->Reading()
1803  ? buffer->BytesLeft()
1804  : source_label.size());
1805 }
1806 
1807 uint32_t WebVTTSourceLabelBox::ComputeSizeInternal() {
1808  if (source_label.empty())
1809  return 0;
1810  return HeaderSize() + source_label.size();
1811 }
1812 
1813 TextSampleEntry::TextSampleEntry() : format(FOURCC_NULL) {}
1814 TextSampleEntry::~TextSampleEntry() {}
1815 
1817  if (format == FOURCC_NULL) {
1818  LOG(ERROR) << "TextSampleEntry should be parsed according to the "
1819  << "handler type recovered in its Media ancestor.";
1820  }
1821  return format;
1822 }
1823 
1824 bool TextSampleEntry::ReadWriteInternal(BoxBuffer* buffer) {
1825  if (buffer->Reading()) {
1826  DCHECK(buffer->reader());
1827  format = buffer->reader()->type();
1828  } else {
1829  RCHECK(ReadWriteHeaderInternal(buffer));
1830  }
1831  RCHECK(buffer->IgnoreBytes(6) && // reserved for SampleEntry.
1832  buffer->ReadWriteUInt16(&data_reference_index));
1833 
1834  if (format == FOURCC_wvtt) {
1835  // TODO(rkuroiwa): Handle the optional MPEG4BitRateBox.
1836  RCHECK(buffer->PrepareChildren() &&
1837  buffer->ReadWriteChild(&config) &&
1838  buffer->ReadWriteChild(&label));
1839  }
1840  return true;
1841 }
1842 
1843 uint32_t TextSampleEntry::ComputeSizeInternal() {
1844  // 6 for the (anonymous) reserved bytes for SampleEntry class.
1845  return HeaderSize() + 6 + sizeof(data_reference_index) +
1846  config.ComputeSize() + label.ComputeSize();
1847 }
1848 
1849 MediaHeader::MediaHeader()
1850  : creation_time(0), modification_time(0), timescale(0), duration(0) {}
1851 MediaHeader::~MediaHeader() {}
1852 FourCC MediaHeader::BoxType() const { return FOURCC_mdhd; }
1853 
1854 bool MediaHeader::ReadWriteInternal(BoxBuffer* buffer) {
1855  RCHECK(ReadWriteHeaderInternal(buffer));
1856 
1857  uint8_t num_bytes = (version == 1) ? sizeof(uint64_t) : sizeof(uint32_t);
1858  RCHECK(buffer->ReadWriteUInt64NBytes(&creation_time, num_bytes) &&
1859  buffer->ReadWriteUInt64NBytes(&modification_time, num_bytes) &&
1860  buffer->ReadWriteUInt32(&timescale) &&
1861  buffer->ReadWriteUInt64NBytes(&duration, num_bytes) &&
1862  language.ReadWrite(buffer) &&
1863  buffer->IgnoreBytes(2)); // predefined.
1864  return true;
1865 }
1866 
1867 uint32_t MediaHeader::ComputeSizeInternal() {
1868  version = IsFitIn32Bits(creation_time, modification_time, duration) ? 0 : 1;
1869  return HeaderSize() + sizeof(timescale) +
1870  sizeof(uint32_t) * (1 + version) * 3 + language.ComputeSize() +
1871  2; // 2 bytes predefined.
1872 }
1873 
1874 VideoMediaHeader::VideoMediaHeader()
1875  : graphicsmode(0), opcolor_red(0), opcolor_green(0), opcolor_blue(0) {
1876  const uint32_t kVideoMediaHeaderFlags = 1;
1877  flags = kVideoMediaHeaderFlags;
1878 }
1879 VideoMediaHeader::~VideoMediaHeader() {}
1880 FourCC VideoMediaHeader::BoxType() const { return FOURCC_vmhd; }
1881 bool VideoMediaHeader::ReadWriteInternal(BoxBuffer* buffer) {
1882  RCHECK(ReadWriteHeaderInternal(buffer) &&
1883  buffer->ReadWriteUInt16(&graphicsmode) &&
1884  buffer->ReadWriteUInt16(&opcolor_red) &&
1885  buffer->ReadWriteUInt16(&opcolor_green) &&
1886  buffer->ReadWriteUInt16(&opcolor_blue));
1887  return true;
1888 }
1889 
1890 uint32_t VideoMediaHeader::ComputeSizeInternal() {
1891  return HeaderSize() + sizeof(graphicsmode) + sizeof(opcolor_red) +
1892  sizeof(opcolor_green) + sizeof(opcolor_blue);
1893 }
1894 
1895 SoundMediaHeader::SoundMediaHeader() : balance(0) {}
1896 SoundMediaHeader::~SoundMediaHeader() {}
1897 FourCC SoundMediaHeader::BoxType() const { return FOURCC_smhd; }
1898 bool SoundMediaHeader::ReadWriteInternal(BoxBuffer* buffer) {
1899  RCHECK(ReadWriteHeaderInternal(buffer) &&
1900  buffer->ReadWriteUInt16(&balance) &&
1901  buffer->IgnoreBytes(2)); // reserved.
1902  return true;
1903 }
1904 
1905 uint32_t SoundMediaHeader::ComputeSizeInternal() {
1906  return HeaderSize() + sizeof(balance) + sizeof(uint16_t);
1907 }
1908 
1909 SubtitleMediaHeader::SubtitleMediaHeader() {}
1910 SubtitleMediaHeader::~SubtitleMediaHeader() {}
1911 
1912 FourCC SubtitleMediaHeader::BoxType() const { return FOURCC_sthd; }
1913 
1914 bool SubtitleMediaHeader::ReadWriteInternal(BoxBuffer* buffer) {
1915  return ReadWriteHeaderInternal(buffer);
1916 }
1917 
1918 uint32_t SubtitleMediaHeader::ComputeSizeInternal() {
1919  return HeaderSize();
1920 }
1921 
1922 DataEntryUrl::DataEntryUrl() {
1923  const uint32_t kDataEntryUrlFlags = 1;
1924  flags = kDataEntryUrlFlags;
1925 }
1926 DataEntryUrl::~DataEntryUrl() {}
1927 FourCC DataEntryUrl::BoxType() const { return FOURCC_url; }
1928 bool DataEntryUrl::ReadWriteInternal(BoxBuffer* buffer) {
1929  RCHECK(ReadWriteHeaderInternal(buffer));
1930  if (buffer->Reading()) {
1931  RCHECK(buffer->ReadWriteVector(&location, buffer->BytesLeft()));
1932  } else {
1933  RCHECK(buffer->ReadWriteVector(&location, location.size()));
1934  }
1935  return true;
1936 }
1937 
1938 uint32_t DataEntryUrl::ComputeSizeInternal() {
1939  return HeaderSize() + location.size();
1940 }
1941 
1942 DataReference::DataReference() {
1943  // Default 1 entry.
1944  data_entry.resize(1);
1945 }
1946 DataReference::~DataReference() {}
1947 FourCC DataReference::BoxType() const { return FOURCC_dref; }
1948 bool DataReference::ReadWriteInternal(BoxBuffer* buffer) {
1949  uint32_t entry_count = data_entry.size();
1950  RCHECK(ReadWriteHeaderInternal(buffer) &&
1951  buffer->ReadWriteUInt32(&entry_count));
1952  data_entry.resize(entry_count);
1953  RCHECK(buffer->PrepareChildren());
1954  for (uint32_t i = 0; i < entry_count; ++i)
1955  RCHECK(buffer->ReadWriteChild(&data_entry[i]));
1956  return true;
1957 }
1958 
1959 uint32_t DataReference::ComputeSizeInternal() {
1960  uint32_t count = data_entry.size();
1961  uint32_t box_size = HeaderSize() + sizeof(count);
1962  for (uint32_t i = 0; i < count; ++i)
1963  box_size += data_entry[i].ComputeSize();
1964  return box_size;
1965 }
1966 
1967 DataInformation::DataInformation() {}
1968 DataInformation::~DataInformation() {}
1969 FourCC DataInformation::BoxType() const { return FOURCC_dinf; }
1970 
1971 bool DataInformation::ReadWriteInternal(BoxBuffer* buffer) {
1972  return ReadWriteHeaderInternal(buffer) &&
1973  buffer->PrepareChildren() &&
1974  buffer->ReadWriteChild(&dref);
1975 }
1976 
1977 uint32_t DataInformation::ComputeSizeInternal() {
1978  return HeaderSize() + dref.ComputeSize();
1979 }
1980 
1981 MediaInformation::MediaInformation() {}
1982 MediaInformation::~MediaInformation() {}
1983 FourCC MediaInformation::BoxType() const { return FOURCC_minf; }
1984 
1985 bool MediaInformation::ReadWriteInternal(BoxBuffer* buffer) {
1986  RCHECK(ReadWriteHeaderInternal(buffer) &&
1987  buffer->PrepareChildren() &&
1988  buffer->ReadWriteChild(&dinf) &&
1989  buffer->ReadWriteChild(&sample_table));
1990  switch (sample_table.description.type) {
1991  case kVideo:
1992  RCHECK(buffer->ReadWriteChild(&vmhd));
1993  break;
1994  case kAudio:
1995  RCHECK(buffer->ReadWriteChild(&smhd));
1996  break;
1997  case kText:
1998  RCHECK(buffer->TryReadWriteChild(&sthd));
1999  break;
2000  default:
2001  NOTIMPLEMENTED();
2002  }
2003  // Hint is not supported for now.
2004  return true;
2005 }
2006 
2007 uint32_t MediaInformation::ComputeSizeInternal() {
2008  uint32_t box_size =
2009  HeaderSize() + dinf.ComputeSize() + sample_table.ComputeSize();
2010  switch (sample_table.description.type) {
2011  case kVideo:
2012  box_size += vmhd.ComputeSize();
2013  break;
2014  case kAudio:
2015  box_size += smhd.ComputeSize();
2016  break;
2017  case kText:
2018  box_size += sthd.ComputeSize();
2019  break;
2020  default:
2021  NOTIMPLEMENTED();
2022  }
2023  return box_size;
2024 }
2025 
2026 Media::Media() {}
2027 Media::~Media() {}
2028 FourCC Media::BoxType() const { return FOURCC_mdia; }
2029 
2030 bool Media::ReadWriteInternal(BoxBuffer* buffer) {
2031  RCHECK(ReadWriteHeaderInternal(buffer) &&
2032  buffer->PrepareChildren() &&
2033  buffer->ReadWriteChild(&header));
2034  if (buffer->Reading()) {
2035  RCHECK(buffer->ReadWriteChild(&handler));
2036  // Maddeningly, the HandlerReference box specifies how to parse the
2037  // SampleDescription box, making the latter the only box (of those that we
2038  // support) which cannot be parsed correctly on its own (or even with
2039  // information from its strict ancestor tree). We thus copy the handler type
2040  // to the sample description box *before* parsing it to provide this
2041  // information while parsing.
2042  information.sample_table.description.type =
2043  FourCCToTrackType(handler.handler_type);
2044  } else {
2045  handler.handler_type =
2046  TrackTypeToFourCC(information.sample_table.description.type);
2047  RCHECK(handler.handler_type != FOURCC_NULL);
2048  RCHECK(buffer->ReadWriteChild(&handler));
2049  }
2050  RCHECK(buffer->ReadWriteChild(&information));
2051  return true;
2052 }
2053 
2054 uint32_t Media::ComputeSizeInternal() {
2055  handler.handler_type =
2056  TrackTypeToFourCC(information.sample_table.description.type);
2057  return HeaderSize() + header.ComputeSize() + handler.ComputeSize() +
2058  information.ComputeSize();
2059 }
2060 
2061 Track::Track() {}
2062 Track::~Track() {}
2063 FourCC Track::BoxType() const { return FOURCC_trak; }
2064 
2065 bool Track::ReadWriteInternal(BoxBuffer* buffer) {
2066  RCHECK(ReadWriteHeaderInternal(buffer) &&
2067  buffer->PrepareChildren() &&
2068  buffer->ReadWriteChild(&header) &&
2069  buffer->ReadWriteChild(&media) &&
2070  buffer->TryReadWriteChild(&edit) &&
2071  buffer->TryReadWriteChild(&sample_encryption));
2072  return true;
2073 }
2074 
2075 uint32_t Track::ComputeSizeInternal() {
2076  return HeaderSize() + header.ComputeSize() + media.ComputeSize() +
2077  edit.ComputeSize();
2078 }
2079 
2080 MovieExtendsHeader::MovieExtendsHeader() : fragment_duration(0) {}
2081 MovieExtendsHeader::~MovieExtendsHeader() {}
2082 FourCC MovieExtendsHeader::BoxType() const { return FOURCC_mehd; }
2083 
2084 bool MovieExtendsHeader::ReadWriteInternal(BoxBuffer* buffer) {
2085  RCHECK(ReadWriteHeaderInternal(buffer));
2086  size_t num_bytes = (version == 1) ? sizeof(uint64_t) : sizeof(uint32_t);
2087  RCHECK(buffer->ReadWriteUInt64NBytes(&fragment_duration, num_bytes));
2088  return true;
2089 }
2090 
2091 uint32_t MovieExtendsHeader::ComputeSizeInternal() {
2092  // This box is optional. Skip it if it is not used.
2093  if (fragment_duration == 0)
2094  return 0;
2095  version = IsFitIn32Bits(fragment_duration) ? 0 : 1;
2096  return HeaderSize() + sizeof(uint32_t) * (1 + version);
2097 }
2098 
2099 TrackExtends::TrackExtends()
2100  : track_id(0),
2101  default_sample_description_index(0),
2102  default_sample_duration(0),
2103  default_sample_size(0),
2104  default_sample_flags(0) {}
2105 TrackExtends::~TrackExtends() {}
2106 FourCC TrackExtends::BoxType() const { return FOURCC_trex; }
2107 
2108 bool TrackExtends::ReadWriteInternal(BoxBuffer* buffer) {
2109  RCHECK(ReadWriteHeaderInternal(buffer) &&
2110  buffer->ReadWriteUInt32(&track_id) &&
2111  buffer->ReadWriteUInt32(&default_sample_description_index) &&
2112  buffer->ReadWriteUInt32(&default_sample_duration) &&
2113  buffer->ReadWriteUInt32(&default_sample_size) &&
2114  buffer->ReadWriteUInt32(&default_sample_flags));
2115  return true;
2116 }
2117 
2118 uint32_t TrackExtends::ComputeSizeInternal() {
2119  return HeaderSize() + sizeof(track_id) +
2120  sizeof(default_sample_description_index) +
2121  sizeof(default_sample_duration) + sizeof(default_sample_size) +
2122  sizeof(default_sample_flags);
2123 }
2124 
2125 MovieExtends::MovieExtends() {}
2126 MovieExtends::~MovieExtends() {}
2127 FourCC MovieExtends::BoxType() const { return FOURCC_mvex; }
2128 
2129 bool MovieExtends::ReadWriteInternal(BoxBuffer* buffer) {
2130  RCHECK(ReadWriteHeaderInternal(buffer) &&
2131  buffer->PrepareChildren() &&
2132  buffer->TryReadWriteChild(&header));
2133  if (buffer->Reading()) {
2134  DCHECK(buffer->reader());
2135  RCHECK(buffer->reader()->ReadChildren(&tracks));
2136  } else {
2137  for (uint32_t i = 0; i < tracks.size(); ++i)
2138  RCHECK(buffer->ReadWriteChild(&tracks[i]));
2139  }
2140  return true;
2141 }
2142 
2143 uint32_t MovieExtends::ComputeSizeInternal() {
2144  // This box is optional. Skip it if it does not contain any track.
2145  if (tracks.size() == 0)
2146  return 0;
2147  uint32_t box_size = HeaderSize() + header.ComputeSize();
2148  for (uint32_t i = 0; i < tracks.size(); ++i)
2149  box_size += tracks[i].ComputeSize();
2150  return box_size;
2151 }
2152 
2153 Movie::Movie() {}
2154 Movie::~Movie() {}
2155 FourCC Movie::BoxType() const { return FOURCC_moov; }
2156 
2157 bool Movie::ReadWriteInternal(BoxBuffer* buffer) {
2158  RCHECK(ReadWriteHeaderInternal(buffer) &&
2159  buffer->PrepareChildren() &&
2160  buffer->ReadWriteChild(&header) &&
2161  buffer->TryReadWriteChild(&metadata) &&
2162  buffer->TryReadWriteChild(&extends));
2163  if (buffer->Reading()) {
2164  BoxReader* reader = buffer->reader();
2165  DCHECK(reader);
2166  RCHECK(reader->ReadChildren(&tracks) &&
2167  reader->TryReadChildren(&pssh));
2168  } else {
2169  for (uint32_t i = 0; i < tracks.size(); ++i)
2170  RCHECK(buffer->ReadWriteChild(&tracks[i]));
2171  for (uint32_t i = 0; i < pssh.size(); ++i)
2172  RCHECK(buffer->ReadWriteChild(&pssh[i]));
2173  }
2174  return true;
2175 }
2176 
2177 uint32_t Movie::ComputeSizeInternal() {
2178  uint32_t box_size = HeaderSize() + header.ComputeSize() +
2179  metadata.ComputeSize() + extends.ComputeSize();
2180  for (uint32_t i = 0; i < tracks.size(); ++i)
2181  box_size += tracks[i].ComputeSize();
2182  for (uint32_t i = 0; i < pssh.size(); ++i)
2183  box_size += pssh[i].ComputeSize();
2184  return box_size;
2185 }
2186 
2187 TrackFragmentDecodeTime::TrackFragmentDecodeTime() : decode_time(0) {}
2188 TrackFragmentDecodeTime::~TrackFragmentDecodeTime() {}
2189 FourCC TrackFragmentDecodeTime::BoxType() const { return FOURCC_tfdt; }
2190 
2191 bool TrackFragmentDecodeTime::ReadWriteInternal(BoxBuffer* buffer) {
2192  RCHECK(ReadWriteHeaderInternal(buffer));
2193  size_t num_bytes = (version == 1) ? sizeof(uint64_t) : sizeof(uint32_t);
2194  RCHECK(buffer->ReadWriteUInt64NBytes(&decode_time, num_bytes));
2195  return true;
2196 }
2197 
2198 uint32_t TrackFragmentDecodeTime::ComputeSizeInternal() {
2199  version = IsFitIn32Bits(decode_time) ? 0 : 1;
2200  return HeaderSize() + sizeof(uint32_t) * (1 + version);
2201 }
2202 
2203 MovieFragmentHeader::MovieFragmentHeader() : sequence_number(0) {}
2204 MovieFragmentHeader::~MovieFragmentHeader() {}
2205 FourCC MovieFragmentHeader::BoxType() const { return FOURCC_mfhd; }
2206 
2207 bool MovieFragmentHeader::ReadWriteInternal(BoxBuffer* buffer) {
2208  return ReadWriteHeaderInternal(buffer) &&
2209  buffer->ReadWriteUInt32(&sequence_number);
2210 }
2211 
2212 uint32_t MovieFragmentHeader::ComputeSizeInternal() {
2213  return HeaderSize() + sizeof(sequence_number);
2214 }
2215 
2216 TrackFragmentHeader::TrackFragmentHeader()
2217  : track_id(0),
2218  sample_description_index(0),
2219  default_sample_duration(0),
2220  default_sample_size(0),
2221  default_sample_flags(0) {}
2222 
2223 TrackFragmentHeader::~TrackFragmentHeader() {}
2224 FourCC TrackFragmentHeader::BoxType() const { return FOURCC_tfhd; }
2225 
2226 bool TrackFragmentHeader::ReadWriteInternal(BoxBuffer* buffer) {
2227  RCHECK(ReadWriteHeaderInternal(buffer) &&
2228  buffer->ReadWriteUInt32(&track_id));
2229 
2230  if (flags & kBaseDataOffsetPresentMask) {
2231  // MSE requires 'default-base-is-moof' to be set and
2232  // 'base-data-offset-present' not to be set. We omit these checks as some
2233  // valid files in the wild don't follow these rules, though they use moof as
2234  // base.
2235  uint64_t base_data_offset;
2236  RCHECK(buffer->ReadWriteUInt64(&base_data_offset));
2237  DLOG(WARNING) << "base-data-offset-present is not expected. Assumes "
2238  "default-base-is-moof.";
2239  }
2240 
2241  if (flags & kSampleDescriptionIndexPresentMask) {
2242  RCHECK(buffer->ReadWriteUInt32(&sample_description_index));
2243  } else if (buffer->Reading()) {
2244  sample_description_index = 0;
2245  }
2246 
2247  if (flags & kDefaultSampleDurationPresentMask) {
2248  RCHECK(buffer->ReadWriteUInt32(&default_sample_duration));
2249  } else if (buffer->Reading()) {
2250  default_sample_duration = 0;
2251  }
2252 
2253  if (flags & kDefaultSampleSizePresentMask) {
2254  RCHECK(buffer->ReadWriteUInt32(&default_sample_size));
2255  } else if (buffer->Reading()) {
2256  default_sample_size = 0;
2257  }
2258 
2259  if (flags & kDefaultSampleFlagsPresentMask)
2260  RCHECK(buffer->ReadWriteUInt32(&default_sample_flags));
2261  return true;
2262 }
2263 
2264 uint32_t TrackFragmentHeader::ComputeSizeInternal() {
2265  uint32_t box_size = HeaderSize() + sizeof(track_id);
2266  if (flags & kSampleDescriptionIndexPresentMask)
2267  box_size += sizeof(sample_description_index);
2268  if (flags & kDefaultSampleDurationPresentMask)
2269  box_size += sizeof(default_sample_duration);
2270  if (flags & kDefaultSampleSizePresentMask)
2271  box_size += sizeof(default_sample_size);
2272  if (flags & kDefaultSampleFlagsPresentMask)
2273  box_size += sizeof(default_sample_flags);
2274  return box_size;
2275 }
2276 
2277 TrackFragmentRun::TrackFragmentRun() : sample_count(0), data_offset(0) {}
2278 TrackFragmentRun::~TrackFragmentRun() {}
2279 FourCC TrackFragmentRun::BoxType() const { return FOURCC_trun; }
2280 
2281 bool TrackFragmentRun::ReadWriteInternal(BoxBuffer* buffer) {
2282  if (!buffer->Reading()) {
2283  // Determine whether version 0 or version 1 should be used.
2284  // Use version 0 if possible, use version 1 if there is a negative
2285  // sample_offset value.
2286  version = 0;
2287  if (flags & kSampleCompTimeOffsetsPresentMask) {
2288  for (uint32_t i = 0; i < sample_count; ++i) {
2289  if (sample_composition_time_offsets[i] < 0) {
2290  version = 1;
2291  break;
2292  }
2293  }
2294  }
2295  }
2296 
2297  RCHECK(ReadWriteHeaderInternal(buffer) &&
2298  buffer->ReadWriteUInt32(&sample_count));
2299 
2300  bool data_offset_present = (flags & kDataOffsetPresentMask) != 0;
2301  bool first_sample_flags_present = (flags & kFirstSampleFlagsPresentMask) != 0;
2302  bool sample_duration_present = (flags & kSampleDurationPresentMask) != 0;
2303  bool sample_size_present = (flags & kSampleSizePresentMask) != 0;
2304  bool sample_flags_present = (flags & kSampleFlagsPresentMask) != 0;
2305  bool sample_composition_time_offsets_present =
2306  (flags & kSampleCompTimeOffsetsPresentMask) != 0;
2307 
2308  if (data_offset_present) {
2309  RCHECK(buffer->ReadWriteUInt32(&data_offset));
2310  } else {
2311  // NOTE: If the data-offset is not present, then the data for this run
2312  // starts immediately after the data of the previous run, or at the
2313  // base-data-offset defined by the track fragment header if this is the
2314  // first run in a track fragment. If the data-offset is present, it is
2315  // relative to the base-data-offset established in the track fragment
2316  // header.
2317  NOTIMPLEMENTED();
2318  }
2319 
2320  uint32_t first_sample_flags;
2321 
2322  if (buffer->Reading()) {
2323  if (first_sample_flags_present)
2324  RCHECK(buffer->ReadWriteUInt32(&first_sample_flags));
2325 
2326  if (sample_duration_present)
2327  sample_durations.resize(sample_count);
2328  if (sample_size_present)
2329  sample_sizes.resize(sample_count);
2330  if (sample_flags_present)
2331  sample_flags.resize(sample_count);
2332  if (sample_composition_time_offsets_present)
2333  sample_composition_time_offsets.resize(sample_count);
2334  } else {
2335  if (first_sample_flags_present) {
2336  first_sample_flags = sample_flags[0];
2337  DCHECK(sample_flags.size() == 1);
2338  RCHECK(buffer->ReadWriteUInt32(&first_sample_flags));
2339  }
2340 
2341  if (sample_duration_present)
2342  DCHECK(sample_durations.size() == sample_count);
2343  if (sample_size_present)
2344  DCHECK(sample_sizes.size() == sample_count);
2345  if (sample_flags_present)
2346  DCHECK(sample_flags.size() == sample_count);
2347  if (sample_composition_time_offsets_present)
2348  DCHECK(sample_composition_time_offsets.size() == sample_count);
2349  }
2350 
2351  for (uint32_t i = 0; i < sample_count; ++i) {
2352  if (sample_duration_present)
2353  RCHECK(buffer->ReadWriteUInt32(&sample_durations[i]));
2354  if (sample_size_present)
2355  RCHECK(buffer->ReadWriteUInt32(&sample_sizes[i]));
2356  if (sample_flags_present)
2357  RCHECK(buffer->ReadWriteUInt32(&sample_flags[i]));
2358 
2359  if (sample_composition_time_offsets_present) {
2360  if (version == 0) {
2361  uint32_t sample_offset = sample_composition_time_offsets[i];
2362  RCHECK(buffer->ReadWriteUInt32(&sample_offset));
2363  sample_composition_time_offsets[i] = sample_offset;
2364  } else {
2365  int32_t sample_offset = sample_composition_time_offsets[i];
2366  RCHECK(buffer->ReadWriteInt32(&sample_offset));
2367  sample_composition_time_offsets[i] = sample_offset;
2368  }
2369  }
2370  }
2371 
2372  if (buffer->Reading()) {
2373  if (first_sample_flags_present) {
2374  if (sample_flags.size() == 0) {
2375  sample_flags.push_back(first_sample_flags);
2376  } else {
2377  sample_flags[0] = first_sample_flags;
2378  }
2379  }
2380  }
2381  return true;
2382 }
2383 
2384 uint32_t TrackFragmentRun::ComputeSizeInternal() {
2385  uint32_t box_size = HeaderSize() + sizeof(sample_count);
2386  if (flags & kDataOffsetPresentMask)
2387  box_size += sizeof(data_offset);
2388  if (flags & kFirstSampleFlagsPresentMask)
2389  box_size += sizeof(uint32_t);
2390  uint32_t fields = (flags & kSampleDurationPresentMask ? 1 : 0) +
2391  (flags & kSampleSizePresentMask ? 1 : 0) +
2392  (flags & kSampleFlagsPresentMask ? 1 : 0) +
2393  (flags & kSampleCompTimeOffsetsPresentMask ? 1 : 0);
2394  box_size += fields * sizeof(uint32_t) * sample_count;
2395  return box_size;
2396 }
2397 
2398 TrackFragment::TrackFragment() : decode_time_absent(false) {}
2399 TrackFragment::~TrackFragment() {}
2400 FourCC TrackFragment::BoxType() const { return FOURCC_traf; }
2401 
2402 bool TrackFragment::ReadWriteInternal(BoxBuffer* buffer) {
2403  RCHECK(ReadWriteHeaderInternal(buffer) &&
2404  buffer->PrepareChildren() &&
2405  buffer->ReadWriteChild(&header));
2406  if (buffer->Reading()) {
2407  DCHECK(buffer->reader());
2408  decode_time_absent = !buffer->reader()->ChildExist(&decode_time);
2409  if (!decode_time_absent)
2410  RCHECK(buffer->ReadWriteChild(&decode_time));
2411  RCHECK(buffer->reader()->TryReadChildren(&runs) &&
2412  buffer->reader()->TryReadChildren(&sample_group_descriptions) &&
2413  buffer->reader()->TryReadChildren(&sample_to_groups));
2414  } else {
2415  if (!decode_time_absent)
2416  RCHECK(buffer->ReadWriteChild(&decode_time));
2417  for (uint32_t i = 0; i < runs.size(); ++i)
2418  RCHECK(buffer->ReadWriteChild(&runs[i]));
2419  for (uint32_t i = 0; i < sample_to_groups.size(); ++i)
2420  RCHECK(buffer->ReadWriteChild(&sample_to_groups[i]));
2421  for (uint32_t i = 0; i < sample_group_descriptions.size(); ++i)
2422  RCHECK(buffer->ReadWriteChild(&sample_group_descriptions[i]));
2423  }
2424  return buffer->TryReadWriteChild(&auxiliary_size) &&
2425  buffer->TryReadWriteChild(&auxiliary_offset) &&
2426  buffer->TryReadWriteChild(&sample_encryption);
2427 }
2428 
2429 uint32_t TrackFragment::ComputeSizeInternal() {
2430  uint32_t box_size =
2431  HeaderSize() + header.ComputeSize() + decode_time.ComputeSize() +
2432  auxiliary_size.ComputeSize() + auxiliary_offset.ComputeSize() +
2433  sample_encryption.ComputeSize();
2434  for (uint32_t i = 0; i < runs.size(); ++i)
2435  box_size += runs[i].ComputeSize();
2436  for (uint32_t i = 0; i < sample_group_descriptions.size(); ++i)
2437  box_size += sample_group_descriptions[i].ComputeSize();
2438  for (uint32_t i = 0; i < sample_to_groups.size(); ++i)
2439  box_size += sample_to_groups[i].ComputeSize();
2440  return box_size;
2441 }
2442 
2443 MovieFragment::MovieFragment() {}
2444 MovieFragment::~MovieFragment() {}
2445 FourCC MovieFragment::BoxType() const { return FOURCC_moof; }
2446 
2447 bool MovieFragment::ReadWriteInternal(BoxBuffer* buffer) {
2448  RCHECK(ReadWriteHeaderInternal(buffer) &&
2449  buffer->PrepareChildren() &&
2450  buffer->ReadWriteChild(&header));
2451  if (buffer->Reading()) {
2452  BoxReader* reader = buffer->reader();
2453  DCHECK(reader);
2454  RCHECK(reader->ReadChildren(&tracks) &&
2455  reader->TryReadChildren(&pssh));
2456  } else {
2457  for (uint32_t i = 0; i < tracks.size(); ++i)
2458  RCHECK(buffer->ReadWriteChild(&tracks[i]));
2459  for (uint32_t i = 0; i < pssh.size(); ++i)
2460  RCHECK(buffer->ReadWriteChild(&pssh[i]));
2461  }
2462  return true;
2463 }
2464 
2465 uint32_t MovieFragment::ComputeSizeInternal() {
2466  uint32_t box_size = HeaderSize() + header.ComputeSize();
2467  for (uint32_t i = 0; i < tracks.size(); ++i)
2468  box_size += tracks[i].ComputeSize();
2469  for (uint32_t i = 0; i < pssh.size(); ++i)
2470  box_size += pssh[i].ComputeSize();
2471  return box_size;
2472 }
2473 
2474 SegmentIndex::SegmentIndex()
2475  : reference_id(0),
2476  timescale(0),
2477  earliest_presentation_time(0),
2478  first_offset(0) {}
2479 SegmentIndex::~SegmentIndex() {}
2480 FourCC SegmentIndex::BoxType() const { return FOURCC_sidx; }
2481 
2482 bool SegmentIndex::ReadWriteInternal(BoxBuffer* buffer) {
2483  RCHECK(ReadWriteHeaderInternal(buffer) &&
2484  buffer->ReadWriteUInt32(&reference_id) &&
2485  buffer->ReadWriteUInt32(&timescale));
2486 
2487  size_t num_bytes = (version == 1) ? sizeof(uint64_t) : sizeof(uint32_t);
2488  RCHECK(
2489  buffer->ReadWriteUInt64NBytes(&earliest_presentation_time, num_bytes) &&
2490  buffer->ReadWriteUInt64NBytes(&first_offset, num_bytes));
2491 
2492  uint16_t reference_count = references.size();
2493  RCHECK(buffer->IgnoreBytes(2) && // reserved.
2494  buffer->ReadWriteUInt16(&reference_count));
2495  references.resize(reference_count);
2496 
2497  uint32_t reference_type_size;
2498  uint32_t sap;
2499  for (uint32_t i = 0; i < reference_count; ++i) {
2500  if (!buffer->Reading()) {
2501  reference_type_size = references[i].referenced_size;
2502  if (references[i].reference_type)
2503  reference_type_size |= (1 << 31);
2504  sap = (references[i].sap_type << 28) | references[i].sap_delta_time;
2505  if (references[i].starts_with_sap)
2506  sap |= (1 << 31);
2507  }
2508  RCHECK(buffer->ReadWriteUInt32(&reference_type_size) &&
2509  buffer->ReadWriteUInt32(&references[i].subsegment_duration) &&
2510  buffer->ReadWriteUInt32(&sap));
2511  if (buffer->Reading()) {
2512  references[i].reference_type = (reference_type_size >> 31) ? true : false;
2513  references[i].referenced_size = reference_type_size & ~(1 << 31);
2514  references[i].starts_with_sap = (sap >> 31) ? true : false;
2515  references[i].sap_type =
2516  static_cast<SegmentReference::SAPType>((sap >> 28) & 0x07);
2517  references[i].sap_delta_time = sap & ~(0xF << 28);
2518  }
2519  }
2520  return true;
2521 }
2522 
2523 uint32_t SegmentIndex::ComputeSizeInternal() {
2524  version = IsFitIn32Bits(earliest_presentation_time, first_offset) ? 0 : 1;
2525  return HeaderSize() + sizeof(reference_id) + sizeof(timescale) +
2526  sizeof(uint32_t) * (1 + version) * 2 + 2 * sizeof(uint16_t) +
2527  3 * sizeof(uint32_t) * references.size();
2528 }
2529 
2530 MediaData::MediaData() : data_size(0) {}
2531 MediaData::~MediaData() {}
2532 FourCC MediaData::BoxType() const { return FOURCC_mdat; }
2533 
2534 bool MediaData::ReadWriteInternal(BoxBuffer* buffer) {
2535  NOTIMPLEMENTED() << "Actual data is parsed and written separately.";
2536  return false;
2537 }
2538 
2539 uint32_t MediaData::ComputeSizeInternal() {
2540  return HeaderSize() + data_size;
2541 }
2542 
2543 CueSourceIDBox::CueSourceIDBox() : source_id(kCueSourceIdNotSet) {}
2544 CueSourceIDBox::~CueSourceIDBox() {}
2545 
2546 FourCC CueSourceIDBox::BoxType() const { return FOURCC_vsid; }
2547 
2548 bool CueSourceIDBox::ReadWriteInternal(BoxBuffer* buffer) {
2549  RCHECK(ReadWriteHeaderInternal(buffer) && buffer->ReadWriteInt32(&source_id));
2550  return true;
2551 }
2552 
2553 uint32_t CueSourceIDBox::ComputeSizeInternal() {
2554  if (source_id == kCueSourceIdNotSet)
2555  return 0;
2556  return HeaderSize() + sizeof(source_id);
2557 }
2558 
2559 CueTimeBox::CueTimeBox() {}
2560 CueTimeBox::~CueTimeBox() {}
2561 
2562 FourCC CueTimeBox::BoxType() const {
2563  return FOURCC_ctim;
2564 }
2565 
2566 bool CueTimeBox::ReadWriteInternal(BoxBuffer* buffer) {
2567  RCHECK(ReadWriteHeaderInternal(buffer));
2568  return buffer->ReadWriteString(
2569  &cue_current_time,
2570  buffer->Reading() ? buffer->BytesLeft() : cue_current_time.size());
2571 }
2572 
2573 uint32_t CueTimeBox::ComputeSizeInternal() {
2574  if (cue_current_time.empty())
2575  return 0;
2576  return HeaderSize() + cue_current_time.size();
2577 }
2578 
2579 CueIDBox::CueIDBox() {}
2580 CueIDBox::~CueIDBox() {}
2581 
2582 FourCC CueIDBox::BoxType() const {
2583  return FOURCC_iden;
2584 }
2585 
2586 bool CueIDBox::ReadWriteInternal(BoxBuffer* buffer) {
2587  RCHECK(ReadWriteHeaderInternal(buffer));
2588  return buffer->ReadWriteString(
2589  &cue_id, buffer->Reading() ? buffer->BytesLeft() : cue_id.size());
2590 }
2591 
2592 uint32_t CueIDBox::ComputeSizeInternal() {
2593  if (cue_id.empty())
2594  return 0;
2595  return HeaderSize() + cue_id.size();
2596 }
2597 
2598 CueSettingsBox::CueSettingsBox() {}
2599 CueSettingsBox::~CueSettingsBox() {}
2600 
2601 FourCC CueSettingsBox::BoxType() const {
2602  return FOURCC_sttg;
2603 }
2604 
2605 bool CueSettingsBox::ReadWriteInternal(BoxBuffer* buffer) {
2606  RCHECK(ReadWriteHeaderInternal(buffer));
2607  return buffer->ReadWriteString(
2608  &settings, buffer->Reading() ? buffer->BytesLeft() : settings.size());
2609 }
2610 
2611 uint32_t CueSettingsBox::ComputeSizeInternal() {
2612  if (settings.empty())
2613  return 0;
2614  return HeaderSize() + settings.size();
2615 }
2616 
2617 CuePayloadBox::CuePayloadBox() {}
2618 CuePayloadBox::~CuePayloadBox() {}
2619 
2620 FourCC CuePayloadBox::BoxType() const {
2621  return FOURCC_payl;
2622 }
2623 
2624 bool CuePayloadBox::ReadWriteInternal(BoxBuffer* buffer) {
2625  RCHECK(ReadWriteHeaderInternal(buffer));
2626  return buffer->ReadWriteString(
2627  &cue_text, buffer->Reading() ? buffer->BytesLeft() : cue_text.size());
2628 }
2629 
2630 uint32_t CuePayloadBox::ComputeSizeInternal() {
2631  return HeaderSize() + cue_text.size();
2632 }
2633 
2634 VTTEmptyCueBox::VTTEmptyCueBox() {}
2635 VTTEmptyCueBox::~VTTEmptyCueBox() {}
2636 
2637 FourCC VTTEmptyCueBox::BoxType() const {
2638  return FOURCC_vtte;
2639 }
2640 
2641 bool VTTEmptyCueBox::ReadWriteInternal(BoxBuffer* buffer) {
2642  return ReadWriteHeaderInternal(buffer);
2643 }
2644 
2645 uint32_t VTTEmptyCueBox::ComputeSizeInternal() {
2646  return HeaderSize();
2647 }
2648 
2649 VTTAdditionalTextBox::VTTAdditionalTextBox() {}
2650 VTTAdditionalTextBox::~VTTAdditionalTextBox() {}
2651 
2653  return FOURCC_vtta;
2654 }
2655 
2656 bool VTTAdditionalTextBox::ReadWriteInternal(BoxBuffer* buffer) {
2657  RCHECK(ReadWriteHeaderInternal(buffer));
2658  return buffer->ReadWriteString(
2659  &cue_additional_text,
2660  buffer->Reading() ? buffer->BytesLeft() : cue_additional_text.size());
2661 }
2662 
2663 uint32_t VTTAdditionalTextBox::ComputeSizeInternal() {
2664  return HeaderSize() + cue_additional_text.size();
2665 }
2666 
2667 VTTCueBox::VTTCueBox() {}
2668 VTTCueBox::~VTTCueBox() {}
2669 
2670 FourCC VTTCueBox::BoxType() const {
2671  return FOURCC_vttc;
2672 }
2673 
2674 bool VTTCueBox::ReadWriteInternal(BoxBuffer* buffer) {
2675  RCHECK(ReadWriteHeaderInternal(buffer) &&
2676  buffer->PrepareChildren() &&
2677  buffer->ReadWriteChild(&cue_source_id) &&
2678  buffer->ReadWriteChild(&cue_id) &&
2679  buffer->ReadWriteChild(&cue_time) &&
2680  buffer->ReadWriteChild(&cue_settings) &&
2681  buffer->ReadWriteChild(&cue_payload));
2682  return true;
2683 }
2684 
2685 uint32_t VTTCueBox::ComputeSizeInternal() {
2686  return HeaderSize() + cue_source_id.ComputeSize() + cue_id.ComputeSize() +
2687  cue_time.ComputeSize() + cue_settings.ComputeSize() +
2688  cue_payload.ComputeSize();
2689 }
2690 
2691 } // namespace mp4
2692 } // namespace media
2693 } // namespace edash_packager
FourCC BoxType() const override
bool ReadChildren(std::vector< T > *children) WARN_UNUSED_RESULT
Definition: box_reader.h:133
bool ReadChild(Box *child) WARN_UNUSED_RESULT
Definition: box_reader.cc:123
virtual bool ReadWriteHeaderInternal(BoxBuffer *buffer)
Definition: box.cc:61
bool ReadWriteHeaderInternal(BoxBuffer *buffer) final
Definition: box.cc:80
bool ParseFromSampleEncryptionData(size_t iv_size, std::vector< SampleEncryptionEntry > *sample_encryption_entries) const
bool ChildExist(Box *child) WARN_UNUSED_RESULT
Definition: box_reader.cc:136
bool ReadWriteUInt64NBytes(uint64_t *v, size_t num_bytes)
Definition: box_buffer.h:117
PrivFrame private_frame
We only support PrivateFrame in ID3. Other frames are ignored.
bool ReadWriteString(std::string *str, size_t size)
Definition: box_buffer.h:139
bool IgnoreBytes(size_t num_bytes)
Definition: box_buffer.h:189
virtual bool Parse(const std::vector< uint8_t > &data)
virtual uint32_t HeaderSize() const
Definition: box.cc:55
void Write(BufferWriter *writer)
Definition: box.cc:25
bool ParseFromBuffer(uint8_t iv_size, bool has_subsamples, BufferReader *reader)
bool TryReadChildren(std::vector< T > *children) WARN_UNUSED_RESULT
Definition: box_reader.h:139
Class for reading MP4 boxes.
Definition: box_reader.h:24
bool ReadWrite(uint8_t iv_size, bool has_subsamples, BoxBuffer *buffer)
uint32_t HeaderSize() const final
Definition: box.cc:75