522 lines
16 KiB
C++
522 lines
16 KiB
C++
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <algorithm> // for min()
|
|
#include "base/atomicops.h"
|
|
#include "testing/gtest/include/gtest/gtest.h"
|
|
|
|
// Number of bits in a size_t.
|
|
static const int kSizeBits = 8 * sizeof(size_t);
|
|
// The maximum size of a size_t.
|
|
static const size_t kMaxSize = ~static_cast<size_t>(0);
|
|
// Maximum positive size of a size_t if it were signed.
|
|
static const size_t kMaxSignedSize = ((size_t(1) << (kSizeBits-1)) - 1);
|
|
// An allocation size which is not too big to be reasonable.
|
|
static const size_t kNotTooBig = 100000;
|
|
// An allocation size which is just too big.
|
|
static const size_t kTooBig = ~static_cast<size_t>(0);
|
|
|
|
namespace {
|
|
|
|
using std::min;
|
|
|
|
// Fill a buffer of the specified size with a predetermined pattern
|
|
static void Fill(unsigned char* buffer, int n) {
|
|
for (int i = 0; i < n; i++) {
|
|
buffer[i] = (i & 0xff);
|
|
}
|
|
}
|
|
|
|
// Check that the specified buffer has the predetermined pattern
|
|
// generated by Fill()
|
|
static bool Valid(unsigned char* buffer, int n) {
|
|
for (int i = 0; i < n; i++) {
|
|
if (buffer[i] != (i & 0xff)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Check that a buffer is completely zeroed.
|
|
static bool IsZeroed(unsigned char* buffer, int n) {
|
|
for (int i = 0; i < n; i++) {
|
|
if (buffer[i] != 0) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Check alignment
|
|
static void CheckAlignment(void* p, int align) {
|
|
EXPECT_EQ(0, reinterpret_cast<uintptr_t>(p) & (align-1));
|
|
}
|
|
|
|
// Return the next interesting size/delta to check. Returns -1 if no more.
|
|
static int NextSize(int size) {
|
|
if (size < 100)
|
|
return size+1;
|
|
|
|
if (size < 100000) {
|
|
// Find next power of two
|
|
int power = 1;
|
|
while (power < size)
|
|
power <<= 1;
|
|
|
|
// Yield (power-1, power, power+1)
|
|
if (size < power-1)
|
|
return power-1;
|
|
|
|
if (size == power-1)
|
|
return power;
|
|
|
|
assert(size == power);
|
|
return power+1;
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
#define GG_ULONGLONG(x) static_cast<uint64>(x)
|
|
|
|
template <class AtomicType>
|
|
static void TestAtomicIncrement() {
|
|
// For now, we just test single threaded execution
|
|
|
|
// use a guard value to make sure the NoBarrier_AtomicIncrement doesn't go
|
|
// outside the expected address bounds. This is in particular to
|
|
// test that some future change to the asm code doesn't cause the
|
|
// 32-bit NoBarrier_AtomicIncrement to do the wrong thing on 64-bit machines.
|
|
struct {
|
|
AtomicType prev_word;
|
|
AtomicType count;
|
|
AtomicType next_word;
|
|
} s;
|
|
|
|
AtomicType prev_word_value, next_word_value;
|
|
memset(&prev_word_value, 0xFF, sizeof(AtomicType));
|
|
memset(&next_word_value, 0xEE, sizeof(AtomicType));
|
|
|
|
s.prev_word = prev_word_value;
|
|
s.count = 0;
|
|
s.next_word = next_word_value;
|
|
|
|
EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 1), 1);
|
|
EXPECT_EQ(s.count, 1);
|
|
EXPECT_EQ(s.prev_word, prev_word_value);
|
|
EXPECT_EQ(s.next_word, next_word_value);
|
|
|
|
EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 2), 3);
|
|
EXPECT_EQ(s.count, 3);
|
|
EXPECT_EQ(s.prev_word, prev_word_value);
|
|
EXPECT_EQ(s.next_word, next_word_value);
|
|
|
|
EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 3), 6);
|
|
EXPECT_EQ(s.count, 6);
|
|
EXPECT_EQ(s.prev_word, prev_word_value);
|
|
EXPECT_EQ(s.next_word, next_word_value);
|
|
|
|
EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -3), 3);
|
|
EXPECT_EQ(s.count, 3);
|
|
EXPECT_EQ(s.prev_word, prev_word_value);
|
|
EXPECT_EQ(s.next_word, next_word_value);
|
|
|
|
EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -2), 1);
|
|
EXPECT_EQ(s.count, 1);
|
|
EXPECT_EQ(s.prev_word, prev_word_value);
|
|
EXPECT_EQ(s.next_word, next_word_value);
|
|
|
|
EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -1), 0);
|
|
EXPECT_EQ(s.count, 0);
|
|
EXPECT_EQ(s.prev_word, prev_word_value);
|
|
EXPECT_EQ(s.next_word, next_word_value);
|
|
|
|
EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -1), -1);
|
|
EXPECT_EQ(s.count, -1);
|
|
EXPECT_EQ(s.prev_word, prev_word_value);
|
|
EXPECT_EQ(s.next_word, next_word_value);
|
|
|
|
EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -4), -5);
|
|
EXPECT_EQ(s.count, -5);
|
|
EXPECT_EQ(s.prev_word, prev_word_value);
|
|
EXPECT_EQ(s.next_word, next_word_value);
|
|
|
|
EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 5), 0);
|
|
EXPECT_EQ(s.count, 0);
|
|
EXPECT_EQ(s.prev_word, prev_word_value);
|
|
EXPECT_EQ(s.next_word, next_word_value);
|
|
}
|
|
|
|
|
|
#define NUM_BITS(T) (sizeof(T) * 8)
|
|
|
|
|
|
template <class AtomicType>
|
|
static void TestCompareAndSwap() {
|
|
AtomicType value = 0;
|
|
AtomicType prev = base::subtle::NoBarrier_CompareAndSwap(&value, 0, 1);
|
|
EXPECT_EQ(1, value);
|
|
EXPECT_EQ(0, prev);
|
|
|
|
// Use test value that has non-zero bits in both halves, more for testing
|
|
// 64-bit implementation on 32-bit platforms.
|
|
const AtomicType k_test_val = (GG_ULONGLONG(1) <<
|
|
(NUM_BITS(AtomicType) - 2)) + 11;
|
|
value = k_test_val;
|
|
prev = base::subtle::NoBarrier_CompareAndSwap(&value, 0, 5);
|
|
EXPECT_EQ(k_test_val, value);
|
|
EXPECT_EQ(k_test_val, prev);
|
|
|
|
value = k_test_val;
|
|
prev = base::subtle::NoBarrier_CompareAndSwap(&value, k_test_val, 5);
|
|
EXPECT_EQ(5, value);
|
|
EXPECT_EQ(k_test_val, prev);
|
|
}
|
|
|
|
|
|
template <class AtomicType>
|
|
static void TestAtomicExchange() {
|
|
AtomicType value = 0;
|
|
AtomicType new_value = base::subtle::NoBarrier_AtomicExchange(&value, 1);
|
|
EXPECT_EQ(1, value);
|
|
EXPECT_EQ(0, new_value);
|
|
|
|
// Use test value that has non-zero bits in both halves, more for testing
|
|
// 64-bit implementation on 32-bit platforms.
|
|
const AtomicType k_test_val = (GG_ULONGLONG(1) <<
|
|
(NUM_BITS(AtomicType) - 2)) + 11;
|
|
value = k_test_val;
|
|
new_value = base::subtle::NoBarrier_AtomicExchange(&value, k_test_val);
|
|
EXPECT_EQ(k_test_val, value);
|
|
EXPECT_EQ(k_test_val, new_value);
|
|
|
|
value = k_test_val;
|
|
new_value = base::subtle::NoBarrier_AtomicExchange(&value, 5);
|
|
EXPECT_EQ(5, value);
|
|
EXPECT_EQ(k_test_val, new_value);
|
|
}
|
|
|
|
|
|
template <class AtomicType>
|
|
static void TestAtomicIncrementBounds() {
|
|
// Test increment at the half-width boundary of the atomic type.
|
|
// It is primarily for testing at the 32-bit boundary for 64-bit atomic type.
|
|
AtomicType test_val = GG_ULONGLONG(1) << (NUM_BITS(AtomicType) / 2);
|
|
AtomicType value = test_val - 1;
|
|
AtomicType new_value = base::subtle::NoBarrier_AtomicIncrement(&value, 1);
|
|
EXPECT_EQ(test_val, value);
|
|
EXPECT_EQ(value, new_value);
|
|
|
|
base::subtle::NoBarrier_AtomicIncrement(&value, -1);
|
|
EXPECT_EQ(test_val - 1, value);
|
|
}
|
|
|
|
// This is a simple sanity check that values are correct. Not testing
|
|
// atomicity
|
|
template <class AtomicType>
|
|
static void TestStore() {
|
|
const AtomicType kVal1 = static_cast<AtomicType>(0xa5a5a5a5a5a5a5a5LL);
|
|
const AtomicType kVal2 = static_cast<AtomicType>(-1);
|
|
|
|
AtomicType value;
|
|
|
|
base::subtle::NoBarrier_Store(&value, kVal1);
|
|
EXPECT_EQ(kVal1, value);
|
|
base::subtle::NoBarrier_Store(&value, kVal2);
|
|
EXPECT_EQ(kVal2, value);
|
|
|
|
base::subtle::Acquire_Store(&value, kVal1);
|
|
EXPECT_EQ(kVal1, value);
|
|
base::subtle::Acquire_Store(&value, kVal2);
|
|
EXPECT_EQ(kVal2, value);
|
|
|
|
base::subtle::Release_Store(&value, kVal1);
|
|
EXPECT_EQ(kVal1, value);
|
|
base::subtle::Release_Store(&value, kVal2);
|
|
EXPECT_EQ(kVal2, value);
|
|
}
|
|
|
|
// This is a simple sanity check that values are correct. Not testing
|
|
// atomicity
|
|
template <class AtomicType>
|
|
static void TestLoad() {
|
|
const AtomicType kVal1 = static_cast<AtomicType>(0xa5a5a5a5a5a5a5a5LL);
|
|
const AtomicType kVal2 = static_cast<AtomicType>(-1);
|
|
|
|
AtomicType value;
|
|
|
|
value = kVal1;
|
|
EXPECT_EQ(kVal1, base::subtle::NoBarrier_Load(&value));
|
|
value = kVal2;
|
|
EXPECT_EQ(kVal2, base::subtle::NoBarrier_Load(&value));
|
|
|
|
value = kVal1;
|
|
EXPECT_EQ(kVal1, base::subtle::Acquire_Load(&value));
|
|
value = kVal2;
|
|
EXPECT_EQ(kVal2, base::subtle::Acquire_Load(&value));
|
|
|
|
value = kVal1;
|
|
EXPECT_EQ(kVal1, base::subtle::Release_Load(&value));
|
|
value = kVal2;
|
|
EXPECT_EQ(kVal2, base::subtle::Release_Load(&value));
|
|
}
|
|
|
|
template <class AtomicType>
|
|
static void TestAtomicOps() {
|
|
TestCompareAndSwap<AtomicType>();
|
|
TestAtomicExchange<AtomicType>();
|
|
TestAtomicIncrementBounds<AtomicType>();
|
|
TestStore<AtomicType>();
|
|
TestLoad<AtomicType>();
|
|
}
|
|
|
|
static void TestCalloc(size_t n, size_t s, bool ok) {
|
|
char* p = reinterpret_cast<char*>(calloc(n, s));
|
|
if (!ok) {
|
|
EXPECT_EQ(NULL, p) << "calloc(n, s) should not succeed";
|
|
} else {
|
|
EXPECT_NE(reinterpret_cast<void*>(NULL), p) <<
|
|
"calloc(n, s) should succeed";
|
|
for (int i = 0; i < n*s; i++) {
|
|
EXPECT_EQ('\0', p[i]);
|
|
}
|
|
free(p);
|
|
}
|
|
}
|
|
|
|
|
|
// A global test counter for number of times the NewHandler is called.
|
|
static int news_handled = 0;
|
|
static void TestNewHandler() {
|
|
++news_handled;
|
|
throw std::bad_alloc();
|
|
}
|
|
|
|
// Because we compile without exceptions, we expect these will not throw.
|
|
static void TestOneNewWithoutExceptions(void* (*func)(size_t),
|
|
bool should_throw) {
|
|
// success test
|
|
try {
|
|
void* ptr = (*func)(kNotTooBig);
|
|
EXPECT_NE(reinterpret_cast<void*>(NULL), ptr) <<
|
|
"allocation should not have failed.";
|
|
} catch(...) {
|
|
EXPECT_EQ(0, 1) << "allocation threw unexpected exception.";
|
|
}
|
|
|
|
// failure test
|
|
try {
|
|
void* rv = (*func)(kTooBig);
|
|
EXPECT_EQ(NULL, rv);
|
|
EXPECT_FALSE(should_throw) << "allocation should have thrown.";
|
|
} catch(...) {
|
|
EXPECT_TRUE(should_throw) << "allocation threw unexpected exception.";
|
|
}
|
|
}
|
|
|
|
static void TestNothrowNew(void* (*func)(size_t)) {
|
|
news_handled = 0;
|
|
|
|
// test without new_handler:
|
|
std::new_handler saved_handler = std::set_new_handler(0);
|
|
TestOneNewWithoutExceptions(func, false);
|
|
|
|
// test with new_handler:
|
|
std::set_new_handler(TestNewHandler);
|
|
TestOneNewWithoutExceptions(func, true);
|
|
EXPECT_EQ(news_handled, 1) << "nothrow new_handler was not called.";
|
|
std::set_new_handler(saved_handler);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
TEST(Atomics, AtomicIncrementWord) {
|
|
TestAtomicIncrement<AtomicWord>();
|
|
}
|
|
|
|
TEST(Atomics, AtomicIncrement32) {
|
|
TestAtomicIncrement<Atomic32>();
|
|
}
|
|
|
|
TEST(Atomics, AtomicOpsWord) {
|
|
TestAtomicIncrement<AtomicWord>();
|
|
}
|
|
|
|
TEST(Atomics, AtomicOps32) {
|
|
TestAtomicIncrement<Atomic32>();
|
|
}
|
|
|
|
TEST(Allocators, Malloc) {
|
|
// Try allocating data with a bunch of alignments and sizes
|
|
for (int size = 1; size < 1048576; size *= 2) {
|
|
unsigned char* ptr = reinterpret_cast<unsigned char*>(malloc(size));
|
|
CheckAlignment(ptr, 2); // Should be 2 byte aligned
|
|
Fill(ptr, size);
|
|
EXPECT_TRUE(Valid(ptr, size));
|
|
free(ptr);
|
|
}
|
|
}
|
|
|
|
TEST(Allocators, Calloc) {
|
|
TestCalloc(0, 0, true);
|
|
TestCalloc(0, 1, true);
|
|
TestCalloc(1, 1, true);
|
|
TestCalloc(1<<10, 0, true);
|
|
TestCalloc(1<<20, 0, true);
|
|
TestCalloc(0, 1<<10, true);
|
|
TestCalloc(0, 1<<20, true);
|
|
TestCalloc(1<<20, 2, true);
|
|
TestCalloc(2, 1<<20, true);
|
|
TestCalloc(1000, 1000, true);
|
|
|
|
TestCalloc(kMaxSize, 2, false);
|
|
TestCalloc(2, kMaxSize, false);
|
|
TestCalloc(kMaxSize, kMaxSize, false);
|
|
|
|
TestCalloc(kMaxSignedSize, 3, false);
|
|
TestCalloc(3, kMaxSignedSize, false);
|
|
TestCalloc(kMaxSignedSize, kMaxSignedSize, false);
|
|
}
|
|
|
|
TEST(Allocators, New) {
|
|
TestNothrowNew(&::operator new);
|
|
TestNothrowNew(&::operator new[]);
|
|
}
|
|
|
|
// This makes sure that reallocing a small number of bytes in either
|
|
// direction doesn't cause us to allocate new memory.
|
|
TEST(Allocators, Realloc1) {
|
|
int start_sizes[] = { 100, 1000, 10000, 100000 };
|
|
int deltas[] = { 1, -2, 4, -8, 16, -32, 64, -128 };
|
|
|
|
for (int s = 0; s < sizeof(start_sizes)/sizeof(*start_sizes); ++s) {
|
|
void* p = malloc(start_sizes[s]);
|
|
ASSERT_TRUE(p);
|
|
// The larger the start-size, the larger the non-reallocing delta.
|
|
for (int d = 0; d < s*2; ++d) {
|
|
void* new_p = realloc(p, start_sizes[s] + deltas[d]);
|
|
ASSERT_EQ(p, new_p); // realloc should not allocate new memory
|
|
}
|
|
// Test again, but this time reallocing smaller first.
|
|
for (int d = 0; d < s*2; ++d) {
|
|
void* new_p = realloc(p, start_sizes[s] - deltas[d]);
|
|
ASSERT_EQ(p, new_p); // realloc should not allocate new memory
|
|
}
|
|
free(p);
|
|
}
|
|
}
|
|
|
|
TEST(Allocators, Realloc2) {
|
|
for (int src_size = 0; src_size >= 0; src_size = NextSize(src_size)) {
|
|
for (int dst_size = 0; dst_size >= 0; dst_size = NextSize(dst_size)) {
|
|
unsigned char* src = reinterpret_cast<unsigned char*>(malloc(src_size));
|
|
Fill(src, src_size);
|
|
unsigned char* dst =
|
|
reinterpret_cast<unsigned char*>(realloc(src, dst_size));
|
|
EXPECT_TRUE(Valid(dst, min(src_size, dst_size)));
|
|
Fill(dst, dst_size);
|
|
EXPECT_TRUE(Valid(dst, dst_size));
|
|
if (dst != NULL) free(dst);
|
|
}
|
|
}
|
|
|
|
// Now make sure realloc works correctly even when we overflow the
|
|
// packed cache, so some entries are evicted from the cache.
|
|
// The cache has 2^12 entries, keyed by page number.
|
|
const int kNumEntries = 1 << 14;
|
|
int** p = reinterpret_cast<int**>(malloc(sizeof(*p) * kNumEntries));
|
|
int sum = 0;
|
|
for (int i = 0; i < kNumEntries; i++) {
|
|
// no page size is likely to be bigger than 8192?
|
|
p[i] = reinterpret_cast<int*>(malloc(8192));
|
|
p[i][1000] = i; // use memory deep in the heart of p
|
|
}
|
|
for (int i = 0; i < kNumEntries; i++) {
|
|
p[i] = reinterpret_cast<int*>(realloc(p[i], 9000));
|
|
}
|
|
for (int i = 0; i < kNumEntries; i++) {
|
|
sum += p[i][1000];
|
|
free(p[i]);
|
|
}
|
|
EXPECT_EQ(kNumEntries/2 * (kNumEntries - 1), sum); // assume kNE is even
|
|
free(p);
|
|
}
|
|
|
|
TEST(Allocators, ReallocZero) {
|
|
// Test that realloc to zero does not return NULL.
|
|
for (int size = 0; size >= 0; size = NextSize(size)) {
|
|
char* ptr = reinterpret_cast<char*>(malloc(size));
|
|
EXPECT_NE(static_cast<char*>(NULL), ptr);
|
|
ptr = reinterpret_cast<char*>(realloc(ptr, 0));
|
|
EXPECT_NE(static_cast<char*>(NULL), ptr);
|
|
if (ptr)
|
|
free(ptr);
|
|
}
|
|
}
|
|
|
|
#ifdef WIN32
|
|
// Test recalloc
|
|
TEST(Allocators, Recalloc) {
|
|
for (int src_size = 0; src_size >= 0; src_size = NextSize(src_size)) {
|
|
for (int dst_size = 0; dst_size >= 0; dst_size = NextSize(dst_size)) {
|
|
unsigned char* src =
|
|
reinterpret_cast<unsigned char*>(_recalloc(NULL, 1, src_size));
|
|
EXPECT_TRUE(IsZeroed(src, src_size));
|
|
Fill(src, src_size);
|
|
unsigned char* dst =
|
|
reinterpret_cast<unsigned char*>(_recalloc(src, 1, dst_size));
|
|
EXPECT_TRUE(Valid(dst, min(src_size, dst_size)));
|
|
Fill(dst, dst_size);
|
|
EXPECT_TRUE(Valid(dst, dst_size));
|
|
if (dst != NULL)
|
|
free(dst);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Test windows specific _aligned_malloc() and _aligned_free() methods.
|
|
TEST(Allocators, AlignedMalloc) {
|
|
// Try allocating data with a bunch of alignments and sizes
|
|
static const int kTestAlignments[] = {8, 16, 256, 4096, 8192, 16384};
|
|
for (int size = 1; size > 0; size = NextSize(size)) {
|
|
for (int i = 0; i < ARRAYSIZE(kTestAlignments); ++i) {
|
|
unsigned char* ptr = static_cast<unsigned char*>(
|
|
_aligned_malloc(size, kTestAlignments[i]));
|
|
CheckAlignment(ptr, kTestAlignments[i]);
|
|
Fill(ptr, size);
|
|
EXPECT_TRUE(Valid(ptr, size));
|
|
|
|
// Make a second allocation of the same size and alignment to prevent
|
|
// allocators from passing this test by accident. Per jar, tcmalloc
|
|
// provides allocations for new (never before seen) sizes out of a thread
|
|
// local heap of a given "size class." Each time the test requests a new
|
|
// size, it will usually get the first element of a span, which is a
|
|
// 4K aligned allocation.
|
|
unsigned char* ptr2 = static_cast<unsigned char*>(
|
|
_aligned_malloc(size, kTestAlignments[i]));
|
|
CheckAlignment(ptr2, kTestAlignments[i]);
|
|
Fill(ptr2, size);
|
|
EXPECT_TRUE(Valid(ptr2, size));
|
|
|
|
// Should never happen, but sanity check just in case.
|
|
ASSERT_NE(ptr, ptr2);
|
|
_aligned_free(ptr);
|
|
_aligned_free(ptr2);
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
int main(int argc, char** argv) {
|
|
testing::InitGoogleTest(&argc, argv);
|
|
return RUN_ALL_TESTS();
|
|
}
|