161 lines
5.7 KiB
C++
161 lines
5.7 KiB
C++
// Copyright 2016 Google Inc. All rights reserved.
|
|
//
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file or at
|
|
// https://developers.google.com/open-source/licenses/bsd
|
|
|
|
#include "packager/media/base/fixed_key_source.h"
|
|
|
|
#include <algorithm>
|
|
#include "packager/base/logging.h"
|
|
#include "packager/base/strings/string_number_conversions.h"
|
|
|
|
namespace {
|
|
const char kEmptyDrmLabel[] = "";
|
|
} // namespace
|
|
|
|
namespace shaka {
|
|
namespace media {
|
|
|
|
FixedKeySource::~FixedKeySource() {}
|
|
|
|
Status FixedKeySource::FetchKeys(EmeInitDataType init_data_type,
|
|
const std::vector<uint8_t>& init_data) {
|
|
// Do nothing for fixed key encryption/decryption.
|
|
return Status::OK;
|
|
}
|
|
|
|
Status FixedKeySource::GetKey(const std::string& stream_label,
|
|
EncryptionKey* key) {
|
|
DCHECK(key);
|
|
// Try to find the key with label |stream_label|. If it is not available,
|
|
// fall back to the default empty label if it is available.
|
|
auto iter = encryption_key_map_.find(stream_label);
|
|
if (iter == encryption_key_map_.end()) {
|
|
iter = encryption_key_map_.find(kEmptyDrmLabel);
|
|
if (iter == encryption_key_map_.end()) {
|
|
return Status(error::NOT_FOUND,
|
|
"Key for '" + stream_label + "' was not found.");
|
|
}
|
|
}
|
|
*key = *iter->second;
|
|
return Status::OK;
|
|
}
|
|
|
|
Status FixedKeySource::GetKey(const std::vector<uint8_t>& key_id,
|
|
EncryptionKey* key) {
|
|
DCHECK(key);
|
|
for (const auto& pair : encryption_key_map_) {
|
|
if (pair.second->key_id == key_id) {
|
|
*key = *pair.second;
|
|
return Status::OK;
|
|
}
|
|
}
|
|
return Status(error::INTERNAL_ERROR,
|
|
"Key for key_id=" + base::HexEncode(&key_id[0], key_id.size()) +
|
|
" was not found.");
|
|
}
|
|
|
|
Status FixedKeySource::GetCryptoPeriodKey(uint32_t crypto_period_index,
|
|
const std::string& stream_label,
|
|
EncryptionKey* key) {
|
|
Status status = GetKey(stream_label, key);
|
|
if (!status.ok())
|
|
return status;
|
|
|
|
// A naive key rotation algorithm is implemented here by left rotating the
|
|
// key, key_id and pssh. Note that this implementation is only intended for
|
|
// testing purpose. The actual key rotation algorithm can be much more
|
|
// complicated.
|
|
LOG(WARNING)
|
|
<< "This naive key rotation algorithm should not be used in production.";
|
|
std::rotate(key->key_id.begin(),
|
|
key->key_id.begin() + (crypto_period_index % key->key_id.size()),
|
|
key->key_id.end());
|
|
std::rotate(key->key.begin(),
|
|
key->key.begin() + (crypto_period_index % key->key.size()),
|
|
key->key.end());
|
|
|
|
for (auto& key_system : key->key_system_info) {
|
|
std::vector<uint8_t> pssh_data = key_system.pssh_data();
|
|
if (!pssh_data.empty()) {
|
|
std::rotate(pssh_data.begin(),
|
|
pssh_data.begin() + (crypto_period_index % pssh_data.size()),
|
|
pssh_data.end());
|
|
key_system.set_pssh_data(pssh_data);
|
|
}
|
|
|
|
// Rotate the key_ids in pssh as well if exists.
|
|
// Save a local copy of the key ids before clearing the key ids in
|
|
// |key_system|. The key ids will be updated and added back later.
|
|
std::vector<std::vector<uint8_t>> key_ids_copy = key_system.key_ids();
|
|
key_system.clear_key_ids();
|
|
for (std::vector<uint8_t>& key_id : key_ids_copy) {
|
|
std::rotate(key_id.begin(),
|
|
key_id.begin() + (crypto_period_index % key_id.size()),
|
|
key_id.end());
|
|
key_system.add_key_id(key_id);
|
|
}
|
|
}
|
|
|
|
return Status::OK;
|
|
}
|
|
|
|
std::unique_ptr<FixedKeySource> FixedKeySource::Create(
|
|
const RawKeyParams& raw_key) {
|
|
std::vector<ProtectionSystemSpecificInfo> key_system_info;
|
|
if (!raw_key.pssh.empty()) {
|
|
if (!ProtectionSystemSpecificInfo::ParseBoxes(
|
|
raw_key.pssh.data(), raw_key.pssh.size(), &key_system_info)) {
|
|
LOG(ERROR) << "--pssh argument should be full PSSH boxes.";
|
|
return std::unique_ptr<FixedKeySource>();
|
|
}
|
|
} else {
|
|
// If there aren't any PSSH boxes given, create one with the common system
|
|
// ID.
|
|
key_system_info.resize(1);
|
|
for (const auto& entry : raw_key.key_map) {
|
|
const RawKeyParams::KeyInfo& key_pair = entry.second;
|
|
key_system_info.back().add_key_id(key_pair.key_id);
|
|
}
|
|
key_system_info.back().set_system_id(kCommonSystemId,
|
|
arraysize(kCommonSystemId));
|
|
key_system_info.back().set_pssh_box_version(1);
|
|
}
|
|
|
|
EncryptionKeyMap encryption_key_map;
|
|
for (const auto& entry : raw_key.key_map) {
|
|
const std::string& drm_label = entry.first;
|
|
const RawKeyParams::KeyInfo& key_pair = entry.second;
|
|
|
|
if (key_pair.key_id.size() != 16) {
|
|
LOG(ERROR) << "Invalid key ID size '" << key_pair.key_id.size()
|
|
<< "', must be 16 bytes.";
|
|
return std::unique_ptr<FixedKeySource>();
|
|
}
|
|
if (key_pair.key.size() != 16) {
|
|
// CENC only supports AES-128, i.e. 16 bytes.
|
|
LOG(ERROR) << "Invalid key size '" << key_pair.key.size()
|
|
<< "', must be 16 bytes.";
|
|
return std::unique_ptr<FixedKeySource>();
|
|
}
|
|
|
|
std::unique_ptr<EncryptionKey> encryption_key(new EncryptionKey);
|
|
encryption_key->key_id = key_pair.key_id;
|
|
encryption_key->key = key_pair.key;
|
|
encryption_key->iv = raw_key.iv;
|
|
encryption_key->key_system_info = key_system_info;
|
|
encryption_key_map[drm_label] = std::move(encryption_key);
|
|
}
|
|
|
|
return std::unique_ptr<FixedKeySource>(
|
|
new FixedKeySource(std::move(encryption_key_map)));
|
|
}
|
|
|
|
FixedKeySource::FixedKeySource() {}
|
|
FixedKeySource::FixedKeySource(EncryptionKeyMap&& encryption_key_map)
|
|
: encryption_key_map_(std::move(encryption_key_map)) {}
|
|
|
|
} // namespace media
|
|
} // namespace shaka
|