shaka-packager/base/metrics/stats_table.cc

569 lines
17 KiB
C++

// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/metrics/stats_table.h"
#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
#include "base/memory/shared_memory.h"
#include "base/process/process_handle.h"
#include "base/strings/string_piece.h"
#include "base/strings/string_util.h"
#include "base/strings/utf_string_conversions.h"
#include "base/threading/platform_thread.h"
#include "base/threading/thread_local_storage.h"
#if defined(OS_POSIX)
#include "errno.h"
#endif
namespace base {
// The StatsTable uses a shared memory segment that is laid out as follows
//
// +-------------------------------------------+
// | Version | Size | MaxCounters | MaxThreads |
// +-------------------------------------------+
// | Thread names table |
// +-------------------------------------------+
// | Thread TID table |
// +-------------------------------------------+
// | Thread PID table |
// +-------------------------------------------+
// | Counter names table |
// +-------------------------------------------+
// | Data |
// +-------------------------------------------+
//
// The data layout is a grid, where the columns are the thread_ids and the
// rows are the counter_ids.
//
// If the first character of the thread_name is '\0', then that column is
// empty.
// If the first character of the counter_name is '\0', then that row is
// empty.
//
// About Locking:
// This class is designed to be both multi-thread and multi-process safe.
// Aside from initialization, this is done by partitioning the data which
// each thread uses so that no locking is required. However, to allocate
// the rows and columns of the table to particular threads, locking is
// required.
//
// At the shared-memory level, we have a lock. This lock protects the
// shared-memory table only, and is used when we create new counters (e.g.
// use rows) or when we register new threads (e.g. use columns). Reading
// data from the table does not require any locking at the shared memory
// level.
//
// Each process which accesses the table will create a StatsTable object.
// The StatsTable maintains a hash table of the existing counters in the
// table for faster lookup. Since the hash table is process specific,
// each process maintains its own cache. We avoid complexity here by never
// de-allocating from the hash table. (Counters are dynamically added,
// but not dynamically removed).
// In order for external viewers to be able to read our shared memory,
// we all need to use the same size ints.
COMPILE_ASSERT(sizeof(int)==4, expect_4_byte_ints);
namespace {
// An internal version in case we ever change the format of this
// file, and so that we can identify our table.
const int kTableVersion = 0x13131313;
// The name for un-named counters and threads in the table.
const char kUnknownName[] = "<unknown>";
// Calculates delta to align an offset to the size of an int
inline int AlignOffset(int offset) {
return (sizeof(int) - (offset % sizeof(int))) % sizeof(int);
}
inline int AlignedSize(int size) {
return size + AlignOffset(size);
}
} // namespace
// The StatsTable::Private maintains convenience pointers into the
// shared memory segment. Use this class to keep the data structure
// clean and accessible.
class StatsTable::Private {
public:
// Various header information contained in the memory mapped segment.
struct TableHeader {
int version;
int size;
int max_counters;
int max_threads;
};
// Construct a new Private based on expected size parameters, or
// return NULL on failure.
static Private* New(const std::string& name, int size,
int max_threads, int max_counters);
SharedMemory* shared_memory() { return &shared_memory_; }
// Accessors for our header pointers
TableHeader* table_header() const { return table_header_; }
int version() const { return table_header_->version; }
int size() const { return table_header_->size; }
int max_counters() const { return table_header_->max_counters; }
int max_threads() const { return table_header_->max_threads; }
// Accessors for our tables
char* thread_name(int slot_id) const {
return &thread_names_table_[
(slot_id-1) * (StatsTable::kMaxThreadNameLength)];
}
PlatformThreadId* thread_tid(int slot_id) const {
return &(thread_tid_table_[slot_id-1]);
}
int* thread_pid(int slot_id) const {
return &(thread_pid_table_[slot_id-1]);
}
char* counter_name(int counter_id) const {
return &counter_names_table_[
(counter_id-1) * (StatsTable::kMaxCounterNameLength)];
}
int* row(int counter_id) const {
return &data_table_[(counter_id-1) * max_threads()];
}
private:
// Constructor is private because you should use New() instead.
Private()
: table_header_(NULL),
thread_names_table_(NULL),
thread_tid_table_(NULL),
thread_pid_table_(NULL),
counter_names_table_(NULL),
data_table_(NULL) {
}
// Initializes the table on first access. Sets header values
// appropriately and zeroes all counters.
void InitializeTable(void* memory, int size, int max_counters,
int max_threads);
// Initializes our in-memory pointers into a pre-created StatsTable.
void ComputeMappedPointers(void* memory);
SharedMemory shared_memory_;
TableHeader* table_header_;
char* thread_names_table_;
PlatformThreadId* thread_tid_table_;
int* thread_pid_table_;
char* counter_names_table_;
int* data_table_;
};
// static
StatsTable::Private* StatsTable::Private::New(const std::string& name,
int size,
int max_threads,
int max_counters) {
scoped_ptr<Private> priv(new Private());
if (!priv->shared_memory_.CreateNamed(name, true, size))
return NULL;
if (!priv->shared_memory_.Map(size))
return NULL;
void* memory = priv->shared_memory_.memory();
TableHeader* header = static_cast<TableHeader*>(memory);
// If the version does not match, then assume the table needs
// to be initialized.
if (header->version != kTableVersion)
priv->InitializeTable(memory, size, max_counters, max_threads);
// We have a valid table, so compute our pointers.
priv->ComputeMappedPointers(memory);
return priv.release();
}
void StatsTable::Private::InitializeTable(void* memory, int size,
int max_counters,
int max_threads) {
// Zero everything.
memset(memory, 0, size);
// Initialize the header.
TableHeader* header = static_cast<TableHeader*>(memory);
header->version = kTableVersion;
header->size = size;
header->max_counters = max_counters;
header->max_threads = max_threads;
}
void StatsTable::Private::ComputeMappedPointers(void* memory) {
char* data = static_cast<char*>(memory);
int offset = 0;
table_header_ = reinterpret_cast<TableHeader*>(data);
offset += sizeof(*table_header_);
offset += AlignOffset(offset);
// Verify we're looking at a valid StatsTable.
DCHECK_EQ(table_header_->version, kTableVersion);
thread_names_table_ = reinterpret_cast<char*>(data + offset);
offset += sizeof(char) *
max_threads() * StatsTable::kMaxThreadNameLength;
offset += AlignOffset(offset);
thread_tid_table_ = reinterpret_cast<PlatformThreadId*>(data + offset);
offset += sizeof(int) * max_threads();
offset += AlignOffset(offset);
thread_pid_table_ = reinterpret_cast<int*>(data + offset);
offset += sizeof(int) * max_threads();
offset += AlignOffset(offset);
counter_names_table_ = reinterpret_cast<char*>(data + offset);
offset += sizeof(char) *
max_counters() * StatsTable::kMaxCounterNameLength;
offset += AlignOffset(offset);
data_table_ = reinterpret_cast<int*>(data + offset);
offset += sizeof(int) * max_threads() * max_counters();
DCHECK_EQ(offset, size());
}
// TLSData carries the data stored in the TLS slots for the
// StatsTable. This is used so that we can properly cleanup when the
// thread exits and return the table slot.
//
// Each thread that calls RegisterThread in the StatsTable will have
// a TLSData stored in its TLS.
struct StatsTable::TLSData {
StatsTable* table;
int slot;
};
// We keep a singleton table which can be easily accessed.
StatsTable* global_table = NULL;
StatsTable::StatsTable(const std::string& name, int max_threads,
int max_counters)
: impl_(NULL),
tls_index_(SlotReturnFunction) {
int table_size =
AlignedSize(sizeof(Private::TableHeader)) +
AlignedSize((max_counters * sizeof(char) * kMaxCounterNameLength)) +
AlignedSize((max_threads * sizeof(char) * kMaxThreadNameLength)) +
AlignedSize(max_threads * sizeof(int)) +
AlignedSize(max_threads * sizeof(int)) +
AlignedSize((sizeof(int) * (max_counters * max_threads)));
impl_ = Private::New(name, table_size, max_threads, max_counters);
if (!impl_)
DPLOG(ERROR) << "StatsTable did not initialize";
}
StatsTable::~StatsTable() {
// Before we tear down our copy of the table, be sure to
// unregister our thread.
UnregisterThread();
// Return ThreadLocalStorage. At this point, if any registered threads
// still exist, they cannot Unregister.
tls_index_.Free();
// Cleanup our shared memory.
delete impl_;
// If we are the global table, unregister ourselves.
if (global_table == this)
global_table = NULL;
}
StatsTable* StatsTable::current() {
return global_table;
}
void StatsTable::set_current(StatsTable* value) {
global_table = value;
}
int StatsTable::GetSlot() const {
TLSData* data = GetTLSData();
if (!data)
return 0;
return data->slot;
}
int StatsTable::RegisterThread(const std::string& name) {
int slot = 0;
if (!impl_)
return 0;
// Registering a thread requires that we lock the shared memory
// so that two threads don't grab the same slot. Fortunately,
// thread creation shouldn't happen in inner loops.
{
SharedMemoryAutoLock lock(impl_->shared_memory());
slot = FindEmptyThread();
if (!slot) {
return 0;
}
// We have space, so consume a column in the table.
std::string thread_name = name;
if (name.empty())
thread_name = kUnknownName;
strlcpy(impl_->thread_name(slot), thread_name.c_str(),
kMaxThreadNameLength);
*(impl_->thread_tid(slot)) = PlatformThread::CurrentId();
*(impl_->thread_pid(slot)) = GetCurrentProcId();
}
// Set our thread local storage.
TLSData* data = new TLSData;
data->table = this;
data->slot = slot;
tls_index_.Set(data);
return slot;
}
int StatsTable::CountThreadsRegistered() const {
if (!impl_)
return 0;
// Loop through the shared memory and count the threads that are active.
// We intentionally do not lock the table during the operation.
int count = 0;
for (int index = 1; index <= impl_->max_threads(); index++) {
char* name = impl_->thread_name(index);
if (*name != '\0')
count++;
}
return count;
}
int StatsTable::FindCounter(const std::string& name) {
// Note: the API returns counters numbered from 1..N, although
// internally, the array is 0..N-1. This is so that we can return
// zero as "not found".
if (!impl_)
return 0;
// Create a scope for our auto-lock.
{
AutoLock scoped_lock(counters_lock_);
// Attempt to find the counter.
CountersMap::const_iterator iter;
iter = counters_.find(name);
if (iter != counters_.end())
return iter->second;
}
// Counter does not exist, so add it.
return AddCounter(name);
}
int* StatsTable::GetLocation(int counter_id, int slot_id) const {
if (!impl_)
return NULL;
if (slot_id > impl_->max_threads())
return NULL;
int* row = impl_->row(counter_id);
return &(row[slot_id-1]);
}
const char* StatsTable::GetRowName(int index) const {
if (!impl_)
return NULL;
return impl_->counter_name(index);
}
int StatsTable::GetRowValue(int index) const {
return GetRowValue(index, 0);
}
int StatsTable::GetRowValue(int index, int pid) const {
if (!impl_)
return 0;
int rv = 0;
int* row = impl_->row(index);
for (int slot_id = 0; slot_id < impl_->max_threads(); slot_id++) {
if (pid == 0 || *impl_->thread_pid(slot_id) == pid)
rv += row[slot_id];
}
return rv;
}
int StatsTable::GetCounterValue(const std::string& name) {
return GetCounterValue(name, 0);
}
int StatsTable::GetCounterValue(const std::string& name, int pid) {
if (!impl_)
return 0;
int row = FindCounter(name);
if (!row)
return 0;
return GetRowValue(row, pid);
}
int StatsTable::GetMaxCounters() const {
if (!impl_)
return 0;
return impl_->max_counters();
}
int StatsTable::GetMaxThreads() const {
if (!impl_)
return 0;
return impl_->max_threads();
}
int* StatsTable::FindLocation(const char* name) {
// Get the static StatsTable
StatsTable *table = StatsTable::current();
if (!table)
return NULL;
// Get the slot for this thread. Try to register
// it if none exists.
int slot = table->GetSlot();
if (!slot && !(slot = table->RegisterThread(std::string())))
return NULL;
// Find the counter id for the counter.
std::string str_name(name);
int counter = table->FindCounter(str_name);
// Now we can find the location in the table.
return table->GetLocation(counter, slot);
}
void StatsTable::UnregisterThread() {
UnregisterThread(GetTLSData());
}
void StatsTable::UnregisterThread(TLSData* data) {
if (!data)
return;
DCHECK(impl_);
// Mark the slot free by zeroing out the thread name.
char* name = impl_->thread_name(data->slot);
*name = '\0';
// Remove the calling thread's TLS so that it cannot use the slot.
tls_index_.Set(NULL);
delete data;
}
void StatsTable::SlotReturnFunction(void* data) {
// This is called by the TLS destructor, which on some platforms has
// already cleared the TLS info, so use the tls_data argument
// rather than trying to fetch it ourselves.
TLSData* tls_data = static_cast<TLSData*>(data);
if (tls_data) {
DCHECK(tls_data->table);
tls_data->table->UnregisterThread(tls_data);
}
}
int StatsTable::FindEmptyThread() const {
// Note: the API returns slots numbered from 1..N, although
// internally, the array is 0..N-1. This is so that we can return
// zero as "not found".
//
// The reason for doing this is because the thread 'slot' is stored
// in TLS, which is always initialized to zero, not -1. If 0 were
// returned as a valid slot number, it would be confused with the
// uninitialized state.
if (!impl_)
return 0;
int index = 1;
for (; index <= impl_->max_threads(); index++) {
char* name = impl_->thread_name(index);
if (!*name)
break;
}
if (index > impl_->max_threads())
return 0; // The table is full.
return index;
}
int StatsTable::FindCounterOrEmptyRow(const std::string& name) const {
// Note: the API returns slots numbered from 1..N, although
// internally, the array is 0..N-1. This is so that we can return
// zero as "not found".
//
// There isn't much reason for this other than to be consistent
// with the way we track columns for thread slots. (See comments
// in FindEmptyThread for why it is done this way).
if (!impl_)
return 0;
int free_slot = 0;
for (int index = 1; index <= impl_->max_counters(); index++) {
char* row_name = impl_->counter_name(index);
if (!*row_name && !free_slot)
free_slot = index; // save that we found a free slot
else if (!strncmp(row_name, name.c_str(), kMaxCounterNameLength))
return index;
}
return free_slot;
}
int StatsTable::AddCounter(const std::string& name) {
if (!impl_)
return 0;
int counter_id = 0;
{
// To add a counter to the shared memory, we need the
// shared memory lock.
SharedMemoryAutoLock lock(impl_->shared_memory());
// We have space, so create a new counter.
counter_id = FindCounterOrEmptyRow(name);
if (!counter_id)
return 0;
std::string counter_name = name;
if (name.empty())
counter_name = kUnknownName;
strlcpy(impl_->counter_name(counter_id), counter_name.c_str(),
kMaxCounterNameLength);
}
// now add to our in-memory cache
{
AutoLock lock(counters_lock_);
counters_[name] = counter_id;
}
return counter_id;
}
StatsTable::TLSData* StatsTable::GetTLSData() const {
TLSData* data =
static_cast<TLSData*>(tls_index_.Get());
if (!data)
return NULL;
DCHECK(data->slot);
DCHECK_EQ(data->table, this);
return data;
}
} // namespace base