shaka-packager/base/sync_socket_win.cc

274 lines
8.4 KiB
C++

// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/sync_socket.h"
#include "base/logging.h"
#include "base/win/scoped_handle.h"
namespace base {
using win::ScopedHandle;
namespace {
// IMPORTANT: do not change how this name is generated because it will break
// in sandboxed scenarios as we might have by-name policies that allow pipe
// creation. Also keep the secure random number generation.
const wchar_t kPipeNameFormat[] = L"\\\\.\\pipe\\chrome.sync.%u.%u.%lu";
const size_t kPipePathMax = arraysize(kPipeNameFormat) + (3 * 10) + 1;
// To avoid users sending negative message lengths to Send/Receive
// we clamp message lengths, which are size_t, to no more than INT_MAX.
const size_t kMaxMessageLength = static_cast<size_t>(INT_MAX);
const int kOutBufferSize = 4096;
const int kInBufferSize = 4096;
const int kDefaultTimeoutMilliSeconds = 1000;
bool CreatePairImpl(HANDLE* socket_a, HANDLE* socket_b, bool overlapped) {
DCHECK(socket_a != socket_b);
DCHECK(*socket_a == SyncSocket::kInvalidHandle);
DCHECK(*socket_b == SyncSocket::kInvalidHandle);
wchar_t name[kPipePathMax];
ScopedHandle handle_a;
DWORD flags = PIPE_ACCESS_DUPLEX | FILE_FLAG_FIRST_PIPE_INSTANCE;
if (overlapped)
flags |= FILE_FLAG_OVERLAPPED;
do {
unsigned int rnd_name;
if (rand_s(&rnd_name) != 0)
return false;
swprintf(name, kPipePathMax,
kPipeNameFormat,
GetCurrentProcessId(),
GetCurrentThreadId(),
rnd_name);
handle_a.Set(CreateNamedPipeW(
name,
flags,
PIPE_TYPE_BYTE | PIPE_READMODE_BYTE,
1,
kOutBufferSize,
kInBufferSize,
kDefaultTimeoutMilliSeconds,
NULL));
} while (!handle_a.IsValid() &&
(GetLastError() == ERROR_PIPE_BUSY));
if (!handle_a.IsValid()) {
NOTREACHED();
return false;
}
// The SECURITY_ANONYMOUS flag means that the server side (handle_a) cannot
// impersonate the client (handle_b). This allows us not to care which side
// ends up in which side of a privilege boundary.
flags = SECURITY_SQOS_PRESENT | SECURITY_ANONYMOUS;
if (overlapped)
flags |= FILE_FLAG_OVERLAPPED;
ScopedHandle handle_b(CreateFileW(name,
GENERIC_READ | GENERIC_WRITE,
0, // no sharing.
NULL, // default security attributes.
OPEN_EXISTING, // opens existing pipe.
flags,
NULL)); // no template file.
if (!handle_b.IsValid()) {
DPLOG(ERROR) << "CreateFileW failed";
return false;
}
if (!ConnectNamedPipe(handle_a, NULL)) {
DWORD error = GetLastError();
if (error != ERROR_PIPE_CONNECTED) {
DPLOG(ERROR) << "ConnectNamedPipe failed";
return false;
}
}
*socket_a = handle_a.Take();
*socket_b = handle_b.Take();
return true;
}
// Inline helper to avoid having the cast everywhere.
DWORD GetNextChunkSize(size_t current_pos, size_t max_size) {
// The following statement is for 64 bit portability.
return static_cast<DWORD>(((max_size - current_pos) <= UINT_MAX) ?
(max_size - current_pos) : UINT_MAX);
}
// Template function that supports calling ReadFile or WriteFile in an
// overlapped fashion and waits for IO completion. The function also waits
// on an event that can be used to cancel the operation. If the operation
// is cancelled, the function returns and closes the relevant socket object.
template <typename BufferType, typename Function>
size_t CancelableFileOperation(Function operation, HANDLE file,
BufferType* buffer, size_t length,
base::WaitableEvent* io_event,
base::WaitableEvent* cancel_event,
CancelableSyncSocket* socket,
DWORD timeout_in_ms) {
// The buffer must be byte size or the length check won't make much sense.
COMPILE_ASSERT(sizeof(buffer[0]) == sizeof(char), incorrect_buffer_type);
DCHECK_LE(length, kMaxMessageLength);
OVERLAPPED ol = {0};
ol.hEvent = io_event->handle();
size_t count = 0;
while (count < length) {
DWORD chunk = GetNextChunkSize(count, length);
// This is either the ReadFile or WriteFile call depending on whether
// we're receiving or sending data.
DWORD len = 0;
BOOL ok = operation(file, static_cast<BufferType*>(buffer) + count, chunk,
&len, &ol);
if (!ok) {
if (::GetLastError() == ERROR_IO_PENDING) {
HANDLE events[] = { io_event->handle(), cancel_event->handle() };
int wait_result = WaitForMultipleObjects(
arraysize(events), events, FALSE, timeout_in_ms);
if (wait_result == (WAIT_OBJECT_0 + 0)) {
GetOverlappedResult(file, &ol, &len, TRUE);
} else if (wait_result == (WAIT_OBJECT_0 + 1)) {
VLOG(1) << "Shutdown was signaled. Closing socket.";
CancelIo(file);
socket->Close();
count = 0;
break;
} else {
// Timeout happened.
DCHECK_EQ(WAIT_TIMEOUT, wait_result);
if (!CancelIo(file)){
DLOG(WARNING) << "CancelIo() failed";
}
break;
}
} else {
break;
}
}
count += len;
// Quit the operation if we can't write/read anymore.
if (len != chunk)
break;
}
return (count > 0) ? count : 0;
}
} // namespace
#if defined(COMPONENT_BUILD)
const SyncSocket::Handle SyncSocket::kInvalidHandle = INVALID_HANDLE_VALUE;
#endif
SyncSocket::SyncSocket() : handle_(kInvalidHandle) {}
SyncSocket::~SyncSocket() {
Close();
}
// static
bool SyncSocket::CreatePair(SyncSocket* socket_a, SyncSocket* socket_b) {
return CreatePairImpl(&socket_a->handle_, &socket_b->handle_, false);
}
bool SyncSocket::Close() {
if (handle_ == kInvalidHandle)
return false;
BOOL retval = CloseHandle(handle_);
handle_ = kInvalidHandle;
return retval ? true : false;
}
size_t SyncSocket::Send(const void* buffer, size_t length) {
DCHECK_LE(length, kMaxMessageLength);
size_t count = 0;
while (count < length) {
DWORD len;
DWORD chunk = GetNextChunkSize(count, length);
if (WriteFile(handle_, static_cast<const char*>(buffer) + count,
chunk, &len, NULL) == FALSE) {
return (0 < count) ? count : 0;
}
count += len;
}
return count;
}
size_t SyncSocket::Receive(void* buffer, size_t length) {
DCHECK_LE(length, kMaxMessageLength);
size_t count = 0;
while (count < length) {
DWORD len;
DWORD chunk = GetNextChunkSize(count, length);
if (ReadFile(handle_, static_cast<char*>(buffer) + count,
chunk, &len, NULL) == FALSE) {
return (0 < count) ? count : 0;
}
count += len;
}
return count;
}
size_t SyncSocket::Peek() {
DWORD available = 0;
PeekNamedPipe(handle_, NULL, 0, NULL, &available, NULL);
return available;
}
CancelableSyncSocket::CancelableSyncSocket()
: shutdown_event_(true, false), file_operation_(true, false) {
}
CancelableSyncSocket::CancelableSyncSocket(Handle handle)
: SyncSocket(handle), shutdown_event_(true, false),
file_operation_(true, false) {
}
bool CancelableSyncSocket::Shutdown() {
// This doesn't shut down the pipe immediately, but subsequent Receive or Send
// methods will fail straight away.
shutdown_event_.Signal();
return true;
}
bool CancelableSyncSocket::Close() {
bool ret = SyncSocket::Close();
shutdown_event_.Reset();
return ret;
}
size_t CancelableSyncSocket::Send(const void* buffer, size_t length) {
static const DWORD kWaitTimeOutInMs = 500;
return CancelableFileOperation(
&WriteFile, handle_, reinterpret_cast<const char*>(buffer),
length, &file_operation_, &shutdown_event_, this, kWaitTimeOutInMs);
}
size_t CancelableSyncSocket::Receive(void* buffer, size_t length) {
return CancelableFileOperation(&ReadFile, handle_,
reinterpret_cast<char*>(buffer), length, &file_operation_,
&shutdown_event_, this, INFINITE);
}
// static
bool CancelableSyncSocket::CreatePair(CancelableSyncSocket* socket_a,
CancelableSyncSocket* socket_b) {
return CreatePairImpl(&socket_a->handle_, &socket_b->handle_, true);
}
} // namespace base