1211 lines
48 KiB
C++
1211 lines
48 KiB
C++
/* Portions are Copyright (C) 2011 Google Inc */
|
|
/* ***** BEGIN LICENSE BLOCK *****
|
|
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
|
*
|
|
* The contents of this file are subject to the Mozilla Public License Version
|
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
* http://www.mozilla.org/MPL/
|
|
*
|
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
|
* for the specific language governing rights and limitations under the
|
|
* License.
|
|
*
|
|
* The Original Code is the Netscape Portable Runtime (NSPR).
|
|
*
|
|
* The Initial Developer of the Original Code is
|
|
* Netscape Communications Corporation.
|
|
* Portions created by the Initial Developer are Copyright (C) 1998-2000
|
|
* the Initial Developer. All Rights Reserved.
|
|
*
|
|
* Contributor(s):
|
|
*
|
|
* Alternatively, the contents of this file may be used under the terms of
|
|
* either the GNU General Public License Version 2 or later (the "GPL"), or
|
|
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
|
* in which case the provisions of the GPL or the LGPL are applicable instead
|
|
* of those above. If you wish to allow use of your version of this file only
|
|
* under the terms of either the GPL or the LGPL, and not to allow others to
|
|
* use your version of this file under the terms of the MPL, indicate your
|
|
* decision by deleting the provisions above and replace them with the notice
|
|
* and other provisions required by the GPL or the LGPL. If you do not delete
|
|
* the provisions above, a recipient may use your version of this file under
|
|
* the terms of any one of the MPL, the GPL or the LGPL.
|
|
*
|
|
* ***** END LICENSE BLOCK ***** */
|
|
|
|
/*
|
|
* prtime.cc --
|
|
* NOTE: The original nspr file name is prtime.c
|
|
*
|
|
* NSPR date and time functions
|
|
*
|
|
* CVS revision 3.37
|
|
*/
|
|
|
|
/*
|
|
* The following functions were copied from the NSPR prtime.c file.
|
|
* PR_ParseTimeString
|
|
* We inlined the new PR_ParseTimeStringToExplodedTime function to avoid
|
|
* copying PR_ExplodeTime and PR_LocalTimeParameters. (The PR_ExplodeTime
|
|
* and PR_ImplodeTime calls cancel each other out.)
|
|
* PR_NormalizeTime
|
|
* PR_GMTParameters
|
|
* PR_ImplodeTime
|
|
* This was modified to use the Win32 SYSTEMTIME/FILETIME structures
|
|
* and the timezone offsets are applied to the FILETIME structure.
|
|
* All types and macros are defined in the base/third_party/prtime.h file.
|
|
* These have been copied from the following nspr files. We have only copied
|
|
* over the types we need.
|
|
* 1. prtime.h
|
|
* 2. prtypes.h
|
|
* 3. prlong.h
|
|
*/
|
|
|
|
#include "base/logging.h"
|
|
#include "base/third_party/nspr/prtime.h"
|
|
#include "build/build_config.h"
|
|
|
|
#if defined(OS_WIN)
|
|
#include <windows.h>
|
|
#elif defined(OS_MACOSX)
|
|
#include <CoreFoundation/CoreFoundation.h>
|
|
#elif defined(OS_ANDROID)
|
|
#include <ctype.h>
|
|
#include "base/os_compat_android.h" // For timegm()
|
|
#elif defined(OS_NACL)
|
|
#include "base/os_compat_nacl.h" // For timegm()
|
|
#endif
|
|
#include <errno.h> /* for EINVAL */
|
|
#include <time.h>
|
|
|
|
/* Implements the Unix localtime_r() function for windows */
|
|
#if defined(OS_WIN)
|
|
static void localtime_r(const time_t* secs, struct tm* time) {
|
|
(void) localtime_s(time, secs);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
*------------------------------------------------------------------------
|
|
*
|
|
* PR_ImplodeTime --
|
|
*
|
|
* Cf. time_t mktime(struct tm *tp)
|
|
* Note that 1 year has < 2^25 seconds. So an PRInt32 is large enough.
|
|
*
|
|
*------------------------------------------------------------------------
|
|
*/
|
|
PRTime
|
|
PR_ImplodeTime(const PRExplodedTime *exploded)
|
|
{
|
|
// This is important, we want to make sure multiplications are
|
|
// done with the correct precision.
|
|
static const PRTime kSecondsToMicroseconds = static_cast<PRTime>(1000000);
|
|
#if defined(OS_WIN)
|
|
// Create the system struct representing our exploded time.
|
|
SYSTEMTIME st = {0};
|
|
FILETIME ft = {0};
|
|
ULARGE_INTEGER uli = {0};
|
|
|
|
st.wYear = exploded->tm_year;
|
|
st.wMonth = exploded->tm_month + 1;
|
|
st.wDayOfWeek = exploded->tm_wday;
|
|
st.wDay = exploded->tm_mday;
|
|
st.wHour = exploded->tm_hour;
|
|
st.wMinute = exploded->tm_min;
|
|
st.wSecond = exploded->tm_sec;
|
|
st.wMilliseconds = exploded->tm_usec/1000;
|
|
// Convert to FILETIME.
|
|
if (!SystemTimeToFileTime(&st, &ft)) {
|
|
NOTREACHED() << "Unable to convert time";
|
|
return 0;
|
|
}
|
|
// Apply offsets.
|
|
uli.LowPart = ft.dwLowDateTime;
|
|
uli.HighPart = ft.dwHighDateTime;
|
|
// Convert from Windows epoch to NSPR epoch, and 100-nanoseconds units
|
|
// to microsecond units.
|
|
PRTime result =
|
|
static_cast<PRTime>((uli.QuadPart / 10) - 11644473600000000i64);
|
|
// Adjust for time zone and dst. Convert from seconds to microseconds.
|
|
result -= (exploded->tm_params.tp_gmt_offset +
|
|
exploded->tm_params.tp_dst_offset) * kSecondsToMicroseconds;
|
|
return result;
|
|
#elif defined(OS_MACOSX)
|
|
// Create the system struct representing our exploded time.
|
|
CFGregorianDate gregorian_date;
|
|
gregorian_date.year = exploded->tm_year;
|
|
gregorian_date.month = exploded->tm_month + 1;
|
|
gregorian_date.day = exploded->tm_mday;
|
|
gregorian_date.hour = exploded->tm_hour;
|
|
gregorian_date.minute = exploded->tm_min;
|
|
gregorian_date.second = exploded->tm_sec;
|
|
|
|
// Compute |absolute_time| in seconds, correct for gmt and dst
|
|
// (note the combined offset will be negative when we need to add it), then
|
|
// convert to microseconds which is what PRTime expects.
|
|
CFAbsoluteTime absolute_time =
|
|
CFGregorianDateGetAbsoluteTime(gregorian_date, NULL);
|
|
PRTime result = static_cast<PRTime>(absolute_time);
|
|
result -= exploded->tm_params.tp_gmt_offset +
|
|
exploded->tm_params.tp_dst_offset;
|
|
result += kCFAbsoluteTimeIntervalSince1970; // PRTime epoch is 1970
|
|
result *= kSecondsToMicroseconds;
|
|
result += exploded->tm_usec;
|
|
return result;
|
|
#elif defined(OS_POSIX)
|
|
struct tm exp_tm = {0};
|
|
exp_tm.tm_sec = exploded->tm_sec;
|
|
exp_tm.tm_min = exploded->tm_min;
|
|
exp_tm.tm_hour = exploded->tm_hour;
|
|
exp_tm.tm_mday = exploded->tm_mday;
|
|
exp_tm.tm_mon = exploded->tm_month;
|
|
exp_tm.tm_year = exploded->tm_year - 1900;
|
|
|
|
time_t absolute_time = timegm(&exp_tm);
|
|
|
|
// If timegm returned -1. Since we don't pass it a time zone, the only
|
|
// valid case of returning -1 is 1 second before Epoch (Dec 31, 1969).
|
|
if (absolute_time == -1 &&
|
|
!(exploded->tm_year == 1969 && exploded->tm_month == 11 &&
|
|
exploded->tm_mday == 31 && exploded->tm_hour == 23 &&
|
|
exploded->tm_min == 59 && exploded->tm_sec == 59)) {
|
|
// If we get here, time_t must be 32 bits.
|
|
// Date was possibly too far in the future and would overflow. Return
|
|
// the most future date possible (year 2038).
|
|
if (exploded->tm_year >= 1970)
|
|
return INT_MAX * kSecondsToMicroseconds;
|
|
// Date was possibly too far in the past and would underflow. Return
|
|
// the most past date possible (year 1901).
|
|
return INT_MIN * kSecondsToMicroseconds;
|
|
}
|
|
|
|
PRTime result = static_cast<PRTime>(absolute_time);
|
|
result -= exploded->tm_params.tp_gmt_offset +
|
|
exploded->tm_params.tp_dst_offset;
|
|
result *= kSecondsToMicroseconds;
|
|
result += exploded->tm_usec;
|
|
return result;
|
|
#else
|
|
#error No PR_ImplodeTime implemented on your platform.
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* The COUNT_LEAPS macro counts the number of leap years passed by
|
|
* till the start of the given year Y. At the start of the year 4
|
|
* A.D. the number of leap years passed by is 0, while at the start of
|
|
* the year 5 A.D. this count is 1. The number of years divisible by
|
|
* 100 but not divisible by 400 (the non-leap years) is deducted from
|
|
* the count to get the correct number of leap years.
|
|
*
|
|
* The COUNT_DAYS macro counts the number of days since 01/01/01 till the
|
|
* start of the given year Y. The number of days at the start of the year
|
|
* 1 is 0 while the number of days at the start of the year 2 is 365
|
|
* (which is ((2)-1) * 365) and so on. The reference point is 01/01/01
|
|
* midnight 00:00:00.
|
|
*/
|
|
|
|
#define COUNT_LEAPS(Y) ( ((Y)-1)/4 - ((Y)-1)/100 + ((Y)-1)/400 )
|
|
#define COUNT_DAYS(Y) ( ((Y)-1)*365 + COUNT_LEAPS(Y) )
|
|
#define DAYS_BETWEEN_YEARS(A, B) (COUNT_DAYS(B) - COUNT_DAYS(A))
|
|
|
|
/*
|
|
* Static variables used by functions in this file
|
|
*/
|
|
|
|
/*
|
|
* The following array contains the day of year for the last day of
|
|
* each month, where index 1 is January, and day 0 is January 1.
|
|
*/
|
|
|
|
static const int lastDayOfMonth[2][13] = {
|
|
{-1, 30, 58, 89, 119, 150, 180, 211, 242, 272, 303, 333, 364},
|
|
{-1, 30, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365}
|
|
};
|
|
|
|
/*
|
|
* The number of days in a month
|
|
*/
|
|
|
|
static const PRInt8 nDays[2][12] = {
|
|
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
|
|
{31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
|
|
};
|
|
|
|
/*
|
|
*-------------------------------------------------------------------------
|
|
*
|
|
* IsLeapYear --
|
|
*
|
|
* Returns 1 if the year is a leap year, 0 otherwise.
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
|
|
static int IsLeapYear(PRInt16 year)
|
|
{
|
|
if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* 'secOffset' should be less than 86400 (i.e., a day).
|
|
* 'time' should point to a normalized PRExplodedTime.
|
|
*/
|
|
|
|
static void
|
|
ApplySecOffset(PRExplodedTime *time, PRInt32 secOffset)
|
|
{
|
|
time->tm_sec += secOffset;
|
|
|
|
/* Note that in this implementation we do not count leap seconds */
|
|
if (time->tm_sec < 0 || time->tm_sec >= 60) {
|
|
time->tm_min += time->tm_sec / 60;
|
|
time->tm_sec %= 60;
|
|
if (time->tm_sec < 0) {
|
|
time->tm_sec += 60;
|
|
time->tm_min--;
|
|
}
|
|
}
|
|
|
|
if (time->tm_min < 0 || time->tm_min >= 60) {
|
|
time->tm_hour += time->tm_min / 60;
|
|
time->tm_min %= 60;
|
|
if (time->tm_min < 0) {
|
|
time->tm_min += 60;
|
|
time->tm_hour--;
|
|
}
|
|
}
|
|
|
|
if (time->tm_hour < 0) {
|
|
/* Decrement mday, yday, and wday */
|
|
time->tm_hour += 24;
|
|
time->tm_mday--;
|
|
time->tm_yday--;
|
|
if (time->tm_mday < 1) {
|
|
time->tm_month--;
|
|
if (time->tm_month < 0) {
|
|
time->tm_month = 11;
|
|
time->tm_year--;
|
|
if (IsLeapYear(time->tm_year))
|
|
time->tm_yday = 365;
|
|
else
|
|
time->tm_yday = 364;
|
|
}
|
|
time->tm_mday = nDays[IsLeapYear(time->tm_year)][time->tm_month];
|
|
}
|
|
time->tm_wday--;
|
|
if (time->tm_wday < 0)
|
|
time->tm_wday = 6;
|
|
} else if (time->tm_hour > 23) {
|
|
/* Increment mday, yday, and wday */
|
|
time->tm_hour -= 24;
|
|
time->tm_mday++;
|
|
time->tm_yday++;
|
|
if (time->tm_mday >
|
|
nDays[IsLeapYear(time->tm_year)][time->tm_month]) {
|
|
time->tm_mday = 1;
|
|
time->tm_month++;
|
|
if (time->tm_month > 11) {
|
|
time->tm_month = 0;
|
|
time->tm_year++;
|
|
time->tm_yday = 0;
|
|
}
|
|
}
|
|
time->tm_wday++;
|
|
if (time->tm_wday > 6)
|
|
time->tm_wday = 0;
|
|
}
|
|
}
|
|
|
|
void
|
|
PR_NormalizeTime(PRExplodedTime *time, PRTimeParamFn params)
|
|
{
|
|
int daysInMonth;
|
|
PRInt32 numDays;
|
|
|
|
/* Get back to GMT */
|
|
time->tm_sec -= time->tm_params.tp_gmt_offset
|
|
+ time->tm_params.tp_dst_offset;
|
|
time->tm_params.tp_gmt_offset = 0;
|
|
time->tm_params.tp_dst_offset = 0;
|
|
|
|
/* Now normalize GMT */
|
|
|
|
if (time->tm_usec < 0 || time->tm_usec >= 1000000) {
|
|
time->tm_sec += time->tm_usec / 1000000;
|
|
time->tm_usec %= 1000000;
|
|
if (time->tm_usec < 0) {
|
|
time->tm_usec += 1000000;
|
|
time->tm_sec--;
|
|
}
|
|
}
|
|
|
|
/* Note that we do not count leap seconds in this implementation */
|
|
if (time->tm_sec < 0 || time->tm_sec >= 60) {
|
|
time->tm_min += time->tm_sec / 60;
|
|
time->tm_sec %= 60;
|
|
if (time->tm_sec < 0) {
|
|
time->tm_sec += 60;
|
|
time->tm_min--;
|
|
}
|
|
}
|
|
|
|
if (time->tm_min < 0 || time->tm_min >= 60) {
|
|
time->tm_hour += time->tm_min / 60;
|
|
time->tm_min %= 60;
|
|
if (time->tm_min < 0) {
|
|
time->tm_min += 60;
|
|
time->tm_hour--;
|
|
}
|
|
}
|
|
|
|
if (time->tm_hour < 0 || time->tm_hour >= 24) {
|
|
time->tm_mday += time->tm_hour / 24;
|
|
time->tm_hour %= 24;
|
|
if (time->tm_hour < 0) {
|
|
time->tm_hour += 24;
|
|
time->tm_mday--;
|
|
}
|
|
}
|
|
|
|
/* Normalize month and year before mday */
|
|
if (time->tm_month < 0 || time->tm_month >= 12) {
|
|
time->tm_year += time->tm_month / 12;
|
|
time->tm_month %= 12;
|
|
if (time->tm_month < 0) {
|
|
time->tm_month += 12;
|
|
time->tm_year--;
|
|
}
|
|
}
|
|
|
|
/* Now that month and year are in proper range, normalize mday */
|
|
|
|
if (time->tm_mday < 1) {
|
|
/* mday too small */
|
|
do {
|
|
/* the previous month */
|
|
time->tm_month--;
|
|
if (time->tm_month < 0) {
|
|
time->tm_month = 11;
|
|
time->tm_year--;
|
|
}
|
|
time->tm_mday += nDays[IsLeapYear(time->tm_year)][time->tm_month];
|
|
} while (time->tm_mday < 1);
|
|
} else {
|
|
daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month];
|
|
while (time->tm_mday > daysInMonth) {
|
|
/* mday too large */
|
|
time->tm_mday -= daysInMonth;
|
|
time->tm_month++;
|
|
if (time->tm_month > 11) {
|
|
time->tm_month = 0;
|
|
time->tm_year++;
|
|
}
|
|
daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month];
|
|
}
|
|
}
|
|
|
|
/* Recompute yday and wday */
|
|
time->tm_yday = time->tm_mday +
|
|
lastDayOfMonth[IsLeapYear(time->tm_year)][time->tm_month];
|
|
|
|
numDays = DAYS_BETWEEN_YEARS(1970, time->tm_year) + time->tm_yday;
|
|
time->tm_wday = (numDays + 4) % 7;
|
|
if (time->tm_wday < 0) {
|
|
time->tm_wday += 7;
|
|
}
|
|
|
|
/* Recompute time parameters */
|
|
|
|
time->tm_params = params(time);
|
|
|
|
ApplySecOffset(time, time->tm_params.tp_gmt_offset
|
|
+ time->tm_params.tp_dst_offset);
|
|
}
|
|
|
|
/*
|
|
*------------------------------------------------------------------------
|
|
*
|
|
* PR_GMTParameters --
|
|
*
|
|
* Returns the PRTimeParameters for Greenwich Mean Time.
|
|
* Trivially, both the tp_gmt_offset and tp_dst_offset fields are 0.
|
|
*
|
|
*------------------------------------------------------------------------
|
|
*/
|
|
|
|
PRTimeParameters
|
|
PR_GMTParameters(const PRExplodedTime *gmt)
|
|
{
|
|
#if defined(XP_MAC)
|
|
#pragma unused (gmt)
|
|
#endif
|
|
|
|
PRTimeParameters retVal = { 0, 0 };
|
|
return retVal;
|
|
}
|
|
|
|
/*
|
|
* The following code implements PR_ParseTimeString(). It is based on
|
|
* ns/lib/xp/xp_time.c, revision 1.25, by Jamie Zawinski <jwz@netscape.com>.
|
|
*/
|
|
|
|
/*
|
|
* We only recognize the abbreviations of a small subset of time zones
|
|
* in North America, Europe, and Japan.
|
|
*
|
|
* PST/PDT: Pacific Standard/Daylight Time
|
|
* MST/MDT: Mountain Standard/Daylight Time
|
|
* CST/CDT: Central Standard/Daylight Time
|
|
* EST/EDT: Eastern Standard/Daylight Time
|
|
* AST: Atlantic Standard Time
|
|
* NST: Newfoundland Standard Time
|
|
* GMT: Greenwich Mean Time
|
|
* BST: British Summer Time
|
|
* MET: Middle Europe Time
|
|
* EET: Eastern Europe Time
|
|
* JST: Japan Standard Time
|
|
*/
|
|
|
|
typedef enum
|
|
{
|
|
TT_UNKNOWN,
|
|
|
|
TT_SUN, TT_MON, TT_TUE, TT_WED, TT_THU, TT_FRI, TT_SAT,
|
|
|
|
TT_JAN, TT_FEB, TT_MAR, TT_APR, TT_MAY, TT_JUN,
|
|
TT_JUL, TT_AUG, TT_SEP, TT_OCT, TT_NOV, TT_DEC,
|
|
|
|
TT_PST, TT_PDT, TT_MST, TT_MDT, TT_CST, TT_CDT, TT_EST, TT_EDT,
|
|
TT_AST, TT_NST, TT_GMT, TT_BST, TT_MET, TT_EET, TT_JST
|
|
} TIME_TOKEN;
|
|
|
|
/*
|
|
* This parses a time/date string into a PRTime
|
|
* (microseconds after "1-Jan-1970 00:00:00 GMT").
|
|
* It returns PR_SUCCESS on success, and PR_FAILURE
|
|
* if the time/date string can't be parsed.
|
|
*
|
|
* Many formats are handled, including:
|
|
*
|
|
* 14 Apr 89 03:20:12
|
|
* 14 Apr 89 03:20 GMT
|
|
* Fri, 17 Mar 89 4:01:33
|
|
* Fri, 17 Mar 89 4:01 GMT
|
|
* Mon Jan 16 16:12 PDT 1989
|
|
* Mon Jan 16 16:12 +0130 1989
|
|
* 6 May 1992 16:41-JST (Wednesday)
|
|
* 22-AUG-1993 10:59:12.82
|
|
* 22-AUG-1993 10:59pm
|
|
* 22-AUG-1993 12:59am
|
|
* 22-AUG-1993 12:59 PM
|
|
* Friday, August 04, 1995 3:54 PM
|
|
* 06/21/95 04:24:34 PM
|
|
* 20/06/95 21:07
|
|
* 95-06-08 19:32:48 EDT
|
|
*
|
|
* If the input string doesn't contain a description of the timezone,
|
|
* we consult the `default_to_gmt' to decide whether the string should
|
|
* be interpreted relative to the local time zone (PR_FALSE) or GMT (PR_TRUE).
|
|
* The correct value for this argument depends on what standard specified
|
|
* the time string which you are parsing.
|
|
*/
|
|
|
|
PRStatus
|
|
PR_ParseTimeString(
|
|
const char *string,
|
|
PRBool default_to_gmt,
|
|
PRTime *result_imploded)
|
|
{
|
|
PRExplodedTime tm;
|
|
PRExplodedTime *result = &tm;
|
|
TIME_TOKEN dotw = TT_UNKNOWN;
|
|
TIME_TOKEN month = TT_UNKNOWN;
|
|
TIME_TOKEN zone = TT_UNKNOWN;
|
|
int zone_offset = -1;
|
|
int dst_offset = 0;
|
|
int date = -1;
|
|
PRInt32 year = -1;
|
|
int hour = -1;
|
|
int min = -1;
|
|
int sec = -1;
|
|
|
|
const char *rest = string;
|
|
|
|
int iterations = 0;
|
|
|
|
PR_ASSERT(string && result);
|
|
if (!string || !result) return PR_FAILURE;
|
|
|
|
while (*rest)
|
|
{
|
|
|
|
if (iterations++ > 1000)
|
|
{
|
|
return PR_FAILURE;
|
|
}
|
|
|
|
switch (*rest)
|
|
{
|
|
case 'a': case 'A':
|
|
if (month == TT_UNKNOWN &&
|
|
(rest[1] == 'p' || rest[1] == 'P') &&
|
|
(rest[2] == 'r' || rest[2] == 'R'))
|
|
month = TT_APR;
|
|
else if (zone == TT_UNKNOWN &&
|
|
(rest[1] == 's' || rest[1] == 'S') &&
|
|
(rest[2] == 't' || rest[2] == 'T'))
|
|
zone = TT_AST;
|
|
else if (month == TT_UNKNOWN &&
|
|
(rest[1] == 'u' || rest[1] == 'U') &&
|
|
(rest[2] == 'g' || rest[2] == 'G'))
|
|
month = TT_AUG;
|
|
break;
|
|
case 'b': case 'B':
|
|
if (zone == TT_UNKNOWN &&
|
|
(rest[1] == 's' || rest[1] == 'S') &&
|
|
(rest[2] == 't' || rest[2] == 'T'))
|
|
zone = TT_BST;
|
|
break;
|
|
case 'c': case 'C':
|
|
if (zone == TT_UNKNOWN &&
|
|
(rest[1] == 'd' || rest[1] == 'D') &&
|
|
(rest[2] == 't' || rest[2] == 'T'))
|
|
zone = TT_CDT;
|
|
else if (zone == TT_UNKNOWN &&
|
|
(rest[1] == 's' || rest[1] == 'S') &&
|
|
(rest[2] == 't' || rest[2] == 'T'))
|
|
zone = TT_CST;
|
|
break;
|
|
case 'd': case 'D':
|
|
if (month == TT_UNKNOWN &&
|
|
(rest[1] == 'e' || rest[1] == 'E') &&
|
|
(rest[2] == 'c' || rest[2] == 'C'))
|
|
month = TT_DEC;
|
|
break;
|
|
case 'e': case 'E':
|
|
if (zone == TT_UNKNOWN &&
|
|
(rest[1] == 'd' || rest[1] == 'D') &&
|
|
(rest[2] == 't' || rest[2] == 'T'))
|
|
zone = TT_EDT;
|
|
else if (zone == TT_UNKNOWN &&
|
|
(rest[1] == 'e' || rest[1] == 'E') &&
|
|
(rest[2] == 't' || rest[2] == 'T'))
|
|
zone = TT_EET;
|
|
else if (zone == TT_UNKNOWN &&
|
|
(rest[1] == 's' || rest[1] == 'S') &&
|
|
(rest[2] == 't' || rest[2] == 'T'))
|
|
zone = TT_EST;
|
|
break;
|
|
case 'f': case 'F':
|
|
if (month == TT_UNKNOWN &&
|
|
(rest[1] == 'e' || rest[1] == 'E') &&
|
|
(rest[2] == 'b' || rest[2] == 'B'))
|
|
month = TT_FEB;
|
|
else if (dotw == TT_UNKNOWN &&
|
|
(rest[1] == 'r' || rest[1] == 'R') &&
|
|
(rest[2] == 'i' || rest[2] == 'I'))
|
|
dotw = TT_FRI;
|
|
break;
|
|
case 'g': case 'G':
|
|
if (zone == TT_UNKNOWN &&
|
|
(rest[1] == 'm' || rest[1] == 'M') &&
|
|
(rest[2] == 't' || rest[2] == 'T'))
|
|
zone = TT_GMT;
|
|
break;
|
|
case 'j': case 'J':
|
|
if (month == TT_UNKNOWN &&
|
|
(rest[1] == 'a' || rest[1] == 'A') &&
|
|
(rest[2] == 'n' || rest[2] == 'N'))
|
|
month = TT_JAN;
|
|
else if (zone == TT_UNKNOWN &&
|
|
(rest[1] == 's' || rest[1] == 'S') &&
|
|
(rest[2] == 't' || rest[2] == 'T'))
|
|
zone = TT_JST;
|
|
else if (month == TT_UNKNOWN &&
|
|
(rest[1] == 'u' || rest[1] == 'U') &&
|
|
(rest[2] == 'l' || rest[2] == 'L'))
|
|
month = TT_JUL;
|
|
else if (month == TT_UNKNOWN &&
|
|
(rest[1] == 'u' || rest[1] == 'U') &&
|
|
(rest[2] == 'n' || rest[2] == 'N'))
|
|
month = TT_JUN;
|
|
break;
|
|
case 'm': case 'M':
|
|
if (month == TT_UNKNOWN &&
|
|
(rest[1] == 'a' || rest[1] == 'A') &&
|
|
(rest[2] == 'r' || rest[2] == 'R'))
|
|
month = TT_MAR;
|
|
else if (month == TT_UNKNOWN &&
|
|
(rest[1] == 'a' || rest[1] == 'A') &&
|
|
(rest[2] == 'y' || rest[2] == 'Y'))
|
|
month = TT_MAY;
|
|
else if (zone == TT_UNKNOWN &&
|
|
(rest[1] == 'd' || rest[1] == 'D') &&
|
|
(rest[2] == 't' || rest[2] == 'T'))
|
|
zone = TT_MDT;
|
|
else if (zone == TT_UNKNOWN &&
|
|
(rest[1] == 'e' || rest[1] == 'E') &&
|
|
(rest[2] == 't' || rest[2] == 'T'))
|
|
zone = TT_MET;
|
|
else if (dotw == TT_UNKNOWN &&
|
|
(rest[1] == 'o' || rest[1] == 'O') &&
|
|
(rest[2] == 'n' || rest[2] == 'N'))
|
|
dotw = TT_MON;
|
|
else if (zone == TT_UNKNOWN &&
|
|
(rest[1] == 's' || rest[1] == 'S') &&
|
|
(rest[2] == 't' || rest[2] == 'T'))
|
|
zone = TT_MST;
|
|
break;
|
|
case 'n': case 'N':
|
|
if (month == TT_UNKNOWN &&
|
|
(rest[1] == 'o' || rest[1] == 'O') &&
|
|
(rest[2] == 'v' || rest[2] == 'V'))
|
|
month = TT_NOV;
|
|
else if (zone == TT_UNKNOWN &&
|
|
(rest[1] == 's' || rest[1] == 'S') &&
|
|
(rest[2] == 't' || rest[2] == 'T'))
|
|
zone = TT_NST;
|
|
break;
|
|
case 'o': case 'O':
|
|
if (month == TT_UNKNOWN &&
|
|
(rest[1] == 'c' || rest[1] == 'C') &&
|
|
(rest[2] == 't' || rest[2] == 'T'))
|
|
month = TT_OCT;
|
|
break;
|
|
case 'p': case 'P':
|
|
if (zone == TT_UNKNOWN &&
|
|
(rest[1] == 'd' || rest[1] == 'D') &&
|
|
(rest[2] == 't' || rest[2] == 'T'))
|
|
zone = TT_PDT;
|
|
else if (zone == TT_UNKNOWN &&
|
|
(rest[1] == 's' || rest[1] == 'S') &&
|
|
(rest[2] == 't' || rest[2] == 'T'))
|
|
zone = TT_PST;
|
|
break;
|
|
case 's': case 'S':
|
|
if (dotw == TT_UNKNOWN &&
|
|
(rest[1] == 'a' || rest[1] == 'A') &&
|
|
(rest[2] == 't' || rest[2] == 'T'))
|
|
dotw = TT_SAT;
|
|
else if (month == TT_UNKNOWN &&
|
|
(rest[1] == 'e' || rest[1] == 'E') &&
|
|
(rest[2] == 'p' || rest[2] == 'P'))
|
|
month = TT_SEP;
|
|
else if (dotw == TT_UNKNOWN &&
|
|
(rest[1] == 'u' || rest[1] == 'U') &&
|
|
(rest[2] == 'n' || rest[2] == 'N'))
|
|
dotw = TT_SUN;
|
|
break;
|
|
case 't': case 'T':
|
|
if (dotw == TT_UNKNOWN &&
|
|
(rest[1] == 'h' || rest[1] == 'H') &&
|
|
(rest[2] == 'u' || rest[2] == 'U'))
|
|
dotw = TT_THU;
|
|
else if (dotw == TT_UNKNOWN &&
|
|
(rest[1] == 'u' || rest[1] == 'U') &&
|
|
(rest[2] == 'e' || rest[2] == 'E'))
|
|
dotw = TT_TUE;
|
|
break;
|
|
case 'u': case 'U':
|
|
if (zone == TT_UNKNOWN &&
|
|
(rest[1] == 't' || rest[1] == 'T') &&
|
|
!(rest[2] >= 'A' && rest[2] <= 'Z') &&
|
|
!(rest[2] >= 'a' && rest[2] <= 'z'))
|
|
/* UT is the same as GMT but UTx is not. */
|
|
zone = TT_GMT;
|
|
break;
|
|
case 'w': case 'W':
|
|
if (dotw == TT_UNKNOWN &&
|
|
(rest[1] == 'e' || rest[1] == 'E') &&
|
|
(rest[2] == 'd' || rest[2] == 'D'))
|
|
dotw = TT_WED;
|
|
break;
|
|
|
|
case '+': case '-':
|
|
{
|
|
const char *end;
|
|
int sign;
|
|
if (zone_offset != -1)
|
|
{
|
|
/* already got one... */
|
|
rest++;
|
|
break;
|
|
}
|
|
if (zone != TT_UNKNOWN && zone != TT_GMT)
|
|
{
|
|
/* GMT+0300 is legal, but PST+0300 is not. */
|
|
rest++;
|
|
break;
|
|
}
|
|
|
|
sign = ((*rest == '+') ? 1 : -1);
|
|
rest++; /* move over sign */
|
|
end = rest;
|
|
while (*end >= '0' && *end <= '9')
|
|
end++;
|
|
if (rest == end) /* no digits here */
|
|
break;
|
|
|
|
if ((end - rest) == 4)
|
|
/* offset in HHMM */
|
|
zone_offset = (((((rest[0]-'0')*10) + (rest[1]-'0')) * 60) +
|
|
(((rest[2]-'0')*10) + (rest[3]-'0')));
|
|
else if ((end - rest) == 2)
|
|
/* offset in hours */
|
|
zone_offset = (((rest[0]-'0')*10) + (rest[1]-'0')) * 60;
|
|
else if ((end - rest) == 1)
|
|
/* offset in hours */
|
|
zone_offset = (rest[0]-'0') * 60;
|
|
else
|
|
/* 3 or >4 */
|
|
break;
|
|
|
|
zone_offset *= sign;
|
|
zone = TT_GMT;
|
|
break;
|
|
}
|
|
|
|
case '0': case '1': case '2': case '3': case '4':
|
|
case '5': case '6': case '7': case '8': case '9':
|
|
{
|
|
int tmp_hour = -1;
|
|
int tmp_min = -1;
|
|
int tmp_sec = -1;
|
|
const char *end = rest + 1;
|
|
while (*end >= '0' && *end <= '9')
|
|
end++;
|
|
|
|
/* end is now the first character after a range of digits. */
|
|
|
|
if (*end == ':')
|
|
{
|
|
if (hour >= 0 && min >= 0) /* already got it */
|
|
break;
|
|
|
|
/* We have seen "[0-9]+:", so this is probably HH:MM[:SS] */
|
|
if ((end - rest) > 2)
|
|
/* it is [0-9][0-9][0-9]+: */
|
|
break;
|
|
else if ((end - rest) == 2)
|
|
tmp_hour = ((rest[0]-'0')*10 +
|
|
(rest[1]-'0'));
|
|
else
|
|
tmp_hour = (rest[0]-'0');
|
|
|
|
/* move over the colon, and parse minutes */
|
|
|
|
rest = ++end;
|
|
while (*end >= '0' && *end <= '9')
|
|
end++;
|
|
|
|
if (end == rest)
|
|
/* no digits after first colon? */
|
|
break;
|
|
else if ((end - rest) > 2)
|
|
/* it is [0-9][0-9][0-9]+: */
|
|
break;
|
|
else if ((end - rest) == 2)
|
|
tmp_min = ((rest[0]-'0')*10 +
|
|
(rest[1]-'0'));
|
|
else
|
|
tmp_min = (rest[0]-'0');
|
|
|
|
/* now go for seconds */
|
|
rest = end;
|
|
if (*rest == ':')
|
|
rest++;
|
|
end = rest;
|
|
while (*end >= '0' && *end <= '9')
|
|
end++;
|
|
|
|
if (end == rest)
|
|
/* no digits after second colon - that's ok. */
|
|
;
|
|
else if ((end - rest) > 2)
|
|
/* it is [0-9][0-9][0-9]+: */
|
|
break;
|
|
else if ((end - rest) == 2)
|
|
tmp_sec = ((rest[0]-'0')*10 +
|
|
(rest[1]-'0'));
|
|
else
|
|
tmp_sec = (rest[0]-'0');
|
|
|
|
/* If we made it here, we've parsed hour and min,
|
|
and possibly sec, so it worked as a unit. */
|
|
|
|
/* skip over whitespace and see if there's an AM or PM
|
|
directly following the time.
|
|
*/
|
|
if (tmp_hour <= 12)
|
|
{
|
|
const char *s = end;
|
|
while (*s && (*s == ' ' || *s == '\t'))
|
|
s++;
|
|
if ((s[0] == 'p' || s[0] == 'P') &&
|
|
(s[1] == 'm' || s[1] == 'M'))
|
|
/* 10:05pm == 22:05, and 12:05pm == 12:05 */
|
|
tmp_hour = (tmp_hour == 12 ? 12 : tmp_hour + 12);
|
|
else if (tmp_hour == 12 &&
|
|
(s[0] == 'a' || s[0] == 'A') &&
|
|
(s[1] == 'm' || s[1] == 'M'))
|
|
/* 12:05am == 00:05 */
|
|
tmp_hour = 0;
|
|
}
|
|
|
|
hour = tmp_hour;
|
|
min = tmp_min;
|
|
sec = tmp_sec;
|
|
rest = end;
|
|
break;
|
|
}
|
|
else if ((*end == '/' || *end == '-') &&
|
|
end[1] >= '0' && end[1] <= '9')
|
|
{
|
|
/* Perhaps this is 6/16/95, 16/6/95, 6-16-95, or 16-6-95
|
|
or even 95-06-05...
|
|
#### But it doesn't handle 1995-06-22.
|
|
*/
|
|
int n1, n2, n3;
|
|
const char *s;
|
|
|
|
if (month != TT_UNKNOWN)
|
|
/* if we saw a month name, this can't be. */
|
|
break;
|
|
|
|
s = rest;
|
|
|
|
n1 = (*s++ - '0'); /* first 1 or 2 digits */
|
|
if (*s >= '0' && *s <= '9')
|
|
n1 = n1*10 + (*s++ - '0');
|
|
|
|
if (*s != '/' && *s != '-') /* slash */
|
|
break;
|
|
s++;
|
|
|
|
if (*s < '0' || *s > '9') /* second 1 or 2 digits */
|
|
break;
|
|
n2 = (*s++ - '0');
|
|
if (*s >= '0' && *s <= '9')
|
|
n2 = n2*10 + (*s++ - '0');
|
|
|
|
if (*s != '/' && *s != '-') /* slash */
|
|
break;
|
|
s++;
|
|
|
|
if (*s < '0' || *s > '9') /* third 1, 2, 4, or 5 digits */
|
|
break;
|
|
n3 = (*s++ - '0');
|
|
if (*s >= '0' && *s <= '9')
|
|
n3 = n3*10 + (*s++ - '0');
|
|
|
|
if (*s >= '0' && *s <= '9') /* optional digits 3, 4, and 5 */
|
|
{
|
|
n3 = n3*10 + (*s++ - '0');
|
|
if (*s < '0' || *s > '9')
|
|
break;
|
|
n3 = n3*10 + (*s++ - '0');
|
|
if (*s >= '0' && *s <= '9')
|
|
n3 = n3*10 + (*s++ - '0');
|
|
}
|
|
|
|
if ((*s >= '0' && *s <= '9') || /* followed by non-alphanum */
|
|
(*s >= 'A' && *s <= 'Z') ||
|
|
(*s >= 'a' && *s <= 'z'))
|
|
break;
|
|
|
|
/* Ok, we parsed three 1-2 digit numbers, with / or -
|
|
between them. Now decide what the hell they are
|
|
(DD/MM/YY or MM/DD/YY or YY/MM/DD.)
|
|
*/
|
|
|
|
if (n1 > 31 || n1 == 0) /* must be YY/MM/DD */
|
|
{
|
|
if (n2 > 12) break;
|
|
if (n3 > 31) break;
|
|
year = n1;
|
|
if (year < 70)
|
|
year += 2000;
|
|
else if (year < 100)
|
|
year += 1900;
|
|
month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1);
|
|
date = n3;
|
|
rest = s;
|
|
break;
|
|
}
|
|
|
|
if (n1 > 12 && n2 > 12) /* illegal */
|
|
{
|
|
rest = s;
|
|
break;
|
|
}
|
|
|
|
if (n3 < 70)
|
|
n3 += 2000;
|
|
else if (n3 < 100)
|
|
n3 += 1900;
|
|
|
|
if (n1 > 12) /* must be DD/MM/YY */
|
|
{
|
|
date = n1;
|
|
month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1);
|
|
year = n3;
|
|
}
|
|
else /* assume MM/DD/YY */
|
|
{
|
|
/* #### In the ambiguous case, should we consult the
|
|
locale to find out the local default? */
|
|
month = (TIME_TOKEN)(n1 + ((int)TT_JAN) - 1);
|
|
date = n2;
|
|
year = n3;
|
|
}
|
|
rest = s;
|
|
}
|
|
else if ((*end >= 'A' && *end <= 'Z') ||
|
|
(*end >= 'a' && *end <= 'z'))
|
|
/* Digits followed by non-punctuation - what's that? */
|
|
;
|
|
else if ((end - rest) == 5) /* five digits is a year */
|
|
year = (year < 0
|
|
? ((rest[0]-'0')*10000L +
|
|
(rest[1]-'0')*1000L +
|
|
(rest[2]-'0')*100L +
|
|
(rest[3]-'0')*10L +
|
|
(rest[4]-'0'))
|
|
: year);
|
|
else if ((end - rest) == 4) /* four digits is a year */
|
|
year = (year < 0
|
|
? ((rest[0]-'0')*1000L +
|
|
(rest[1]-'0')*100L +
|
|
(rest[2]-'0')*10L +
|
|
(rest[3]-'0'))
|
|
: year);
|
|
else if ((end - rest) == 2) /* two digits - date or year */
|
|
{
|
|
int n = ((rest[0]-'0')*10 +
|
|
(rest[1]-'0'));
|
|
/* If we don't have a date (day of the month) and we see a number
|
|
less than 32, then assume that is the date.
|
|
|
|
Otherwise, if we have a date and not a year, assume this is the
|
|
year. If it is less than 70, then assume it refers to the 21st
|
|
century. If it is two digits (>= 70), assume it refers to this
|
|
century. Otherwise, assume it refers to an unambiguous year.
|
|
|
|
The world will surely end soon.
|
|
*/
|
|
if (date < 0 && n < 32)
|
|
date = n;
|
|
else if (year < 0)
|
|
{
|
|
if (n < 70)
|
|
year = 2000 + n;
|
|
else if (n < 100)
|
|
year = 1900 + n;
|
|
else
|
|
year = n;
|
|
}
|
|
/* else what the hell is this. */
|
|
}
|
|
else if ((end - rest) == 1) /* one digit - date */
|
|
date = (date < 0 ? (rest[0]-'0') : date);
|
|
/* else, three or more than five digits - what's that? */
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Skip to the end of this token, whether we parsed it or not.
|
|
Tokens are delimited by whitespace, or ,;-/
|
|
But explicitly not :+-.
|
|
*/
|
|
while (*rest &&
|
|
*rest != ' ' && *rest != '\t' &&
|
|
*rest != ',' && *rest != ';' &&
|
|
*rest != '-' && *rest != '+' &&
|
|
*rest != '/' &&
|
|
*rest != '(' && *rest != ')' && *rest != '[' && *rest != ']')
|
|
rest++;
|
|
/* skip over uninteresting chars. */
|
|
SKIP_MORE:
|
|
while (*rest &&
|
|
(*rest == ' ' || *rest == '\t' ||
|
|
*rest == ',' || *rest == ';' || *rest == '/' ||
|
|
*rest == '(' || *rest == ')' || *rest == '[' || *rest == ']'))
|
|
rest++;
|
|
|
|
/* "-" is ignored at the beginning of a token if we have not yet
|
|
parsed a year (e.g., the second "-" in "30-AUG-1966"), or if
|
|
the character after the dash is not a digit. */
|
|
if (*rest == '-' && ((rest > string &&
|
|
isalpha((unsigned char)rest[-1]) && year < 0) ||
|
|
rest[1] < '0' || rest[1] > '9'))
|
|
{
|
|
rest++;
|
|
goto SKIP_MORE;
|
|
}
|
|
|
|
}
|
|
|
|
if (zone != TT_UNKNOWN && zone_offset == -1)
|
|
{
|
|
switch (zone)
|
|
{
|
|
case TT_PST: zone_offset = -8 * 60; break;
|
|
case TT_PDT: zone_offset = -8 * 60; dst_offset = 1 * 60; break;
|
|
case TT_MST: zone_offset = -7 * 60; break;
|
|
case TT_MDT: zone_offset = -7 * 60; dst_offset = 1 * 60; break;
|
|
case TT_CST: zone_offset = -6 * 60; break;
|
|
case TT_CDT: zone_offset = -6 * 60; dst_offset = 1 * 60; break;
|
|
case TT_EST: zone_offset = -5 * 60; break;
|
|
case TT_EDT: zone_offset = -5 * 60; dst_offset = 1 * 60; break;
|
|
case TT_AST: zone_offset = -4 * 60; break;
|
|
case TT_NST: zone_offset = -3 * 60 - 30; break;
|
|
case TT_GMT: zone_offset = 0 * 60; break;
|
|
case TT_BST: zone_offset = 0 * 60; dst_offset = 1 * 60; break;
|
|
case TT_MET: zone_offset = 1 * 60; break;
|
|
case TT_EET: zone_offset = 2 * 60; break;
|
|
case TT_JST: zone_offset = 9 * 60; break;
|
|
default:
|
|
PR_ASSERT (0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* If we didn't find a year, month, or day-of-the-month, we can't
|
|
possibly parse this, and in fact, mktime() will do something random
|
|
(I'm seeing it return "Tue Feb 5 06:28:16 2036", which is no doubt
|
|
a numerologically significant date... */
|
|
if (month == TT_UNKNOWN || date == -1 || year == -1 || year > PR_INT16_MAX)
|
|
return PR_FAILURE;
|
|
|
|
memset(result, 0, sizeof(*result));
|
|
if (sec != -1)
|
|
result->tm_sec = sec;
|
|
if (min != -1)
|
|
result->tm_min = min;
|
|
if (hour != -1)
|
|
result->tm_hour = hour;
|
|
if (date != -1)
|
|
result->tm_mday = date;
|
|
if (month != TT_UNKNOWN)
|
|
result->tm_month = (((int)month) - ((int)TT_JAN));
|
|
if (year != -1)
|
|
result->tm_year = year;
|
|
if (dotw != TT_UNKNOWN)
|
|
result->tm_wday = (((int)dotw) - ((int)TT_SUN));
|
|
/*
|
|
* Mainly to compute wday and yday, but normalized time is also required
|
|
* by the check below that works around a Visual C++ 2005 mktime problem.
|
|
*/
|
|
PR_NormalizeTime(result, PR_GMTParameters);
|
|
/* The remaining work is to set the gmt and dst offsets in tm_params. */
|
|
|
|
if (zone == TT_UNKNOWN && default_to_gmt)
|
|
{
|
|
/* No zone was specified, so pretend the zone was GMT. */
|
|
zone = TT_GMT;
|
|
zone_offset = 0;
|
|
}
|
|
|
|
if (zone_offset == -1)
|
|
{
|
|
/* no zone was specified, and we're to assume that everything
|
|
is local. */
|
|
struct tm localTime;
|
|
time_t secs;
|
|
|
|
PR_ASSERT(result->tm_month > -1 &&
|
|
result->tm_mday > 0 &&
|
|
result->tm_hour > -1 &&
|
|
result->tm_min > -1 &&
|
|
result->tm_sec > -1);
|
|
|
|
/*
|
|
* To obtain time_t from a tm structure representing the local
|
|
* time, we call mktime(). However, we need to see if we are
|
|
* on 1-Jan-1970 or before. If we are, we can't call mktime()
|
|
* because mktime() will crash on win16. In that case, we
|
|
* calculate zone_offset based on the zone offset at
|
|
* 00:00:00, 2 Jan 1970 GMT, and subtract zone_offset from the
|
|
* date we are parsing to transform the date to GMT. We also
|
|
* do so if mktime() returns (time_t) -1 (time out of range).
|
|
*/
|
|
|
|
/* month, day, hours, mins and secs are always non-negative
|
|
so we dont need to worry about them. */
|
|
if(result->tm_year >= 1970)
|
|
{
|
|
PRInt64 usec_per_sec;
|
|
|
|
localTime.tm_sec = result->tm_sec;
|
|
localTime.tm_min = result->tm_min;
|
|
localTime.tm_hour = result->tm_hour;
|
|
localTime.tm_mday = result->tm_mday;
|
|
localTime.tm_mon = result->tm_month;
|
|
localTime.tm_year = result->tm_year - 1900;
|
|
/* Set this to -1 to tell mktime "I don't care". If you set
|
|
it to 0 or 1, you are making assertions about whether the
|
|
date you are handing it is in daylight savings mode or not;
|
|
and if you're wrong, it will "fix" it for you. */
|
|
localTime.tm_isdst = -1;
|
|
|
|
#if _MSC_VER == 1400 /* 1400 = Visual C++ 2005 (8.0) */
|
|
/*
|
|
* mktime will return (time_t) -1 if the input is a date
|
|
* after 23:59:59, December 31, 3000, US Pacific Time (not
|
|
* UTC as documented):
|
|
* http://msdn.microsoft.com/en-us/library/d1y53h2a(VS.80).aspx
|
|
* But if the year is 3001, mktime also invokes the invalid
|
|
* parameter handler, causing the application to crash. This
|
|
* problem has been reported in
|
|
* http://connect.microsoft.com/VisualStudio/feedback/ViewFeedback.aspx?FeedbackID=266036.
|
|
* We avoid this crash by not calling mktime if the date is
|
|
* out of range. To use a simple test that works in any time
|
|
* zone, we consider year 3000 out of range as well. (See
|
|
* bug 480740.)
|
|
*/
|
|
if (result->tm_year >= 3000) {
|
|
/* Emulate what mktime would have done. */
|
|
errno = EINVAL;
|
|
secs = (time_t) -1;
|
|
} else {
|
|
secs = mktime(&localTime);
|
|
}
|
|
#else
|
|
secs = mktime(&localTime);
|
|
#endif
|
|
if (secs != (time_t) -1)
|
|
{
|
|
PRTime usecs64;
|
|
LL_I2L(usecs64, secs);
|
|
LL_I2L(usec_per_sec, PR_USEC_PER_SEC);
|
|
LL_MUL(usecs64, usecs64, usec_per_sec);
|
|
*result_imploded = usecs64;
|
|
return PR_SUCCESS;
|
|
}
|
|
}
|
|
|
|
/* So mktime() can't handle this case. We assume the
|
|
zone_offset for the date we are parsing is the same as
|
|
the zone offset on 00:00:00 2 Jan 1970 GMT. */
|
|
secs = 86400;
|
|
localtime_r(&secs, &localTime);
|
|
zone_offset = localTime.tm_min
|
|
+ 60 * localTime.tm_hour
|
|
+ 1440 * (localTime.tm_mday - 2);
|
|
}
|
|
|
|
result->tm_params.tp_gmt_offset = zone_offset * 60;
|
|
result->tm_params.tp_dst_offset = dst_offset * 60;
|
|
|
|
*result_imploded = PR_ImplodeTime(result);
|
|
return PR_SUCCESS;
|
|
}
|