shaka-packager/packager/media/formats/mp2t/es_parser_h26x.cc

356 lines
13 KiB
C++

// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <packager/media/formats/mp2t/es_parser_h26x.h>
#include <cstdint>
#include <glog/logging.h>
#include <packager/media/base/media_sample.h>
#include <packager/media/base/offset_byte_queue.h>
#include <packager/media/base/timestamp.h>
#include <packager/media/base/video_stream_info.h>
#include <packager/media/codecs/h26x_byte_to_unit_stream_converter.h>
#include <packager/media/formats/mp2t/mp2t_common.h>
namespace shaka {
namespace media {
namespace mp2t {
namespace {
const int kStartCodeSize = 3;
const int kH264NaluHeaderSize = 1;
const int kH265NaluHeaderSize = 2;
} // namespace
EsParserH26x::EsParserH26x(
Nalu::CodecType type,
std::unique_ptr<H26xByteToUnitStreamConverter> stream_converter,
uint32_t pid,
const EmitSampleCB& emit_sample_cb)
: EsParser(pid),
emit_sample_cb_(emit_sample_cb),
type_(type),
es_queue_(new media::OffsetByteQueue()),
stream_converter_(std::move(stream_converter)) {}
EsParserH26x::~EsParserH26x() {}
bool EsParserH26x::Parse(const uint8_t* buf,
int size,
int64_t pts,
int64_t dts) {
// Note: Parse is invoked each time a PES packet has been reassembled.
// Unfortunately, a PES packet does not necessarily map
// to an h264/h265 access unit, although the HLS recommendation is to use one
// PES for each access unit (but this is just a recommendation and some
// streams do not comply with this recommendation).
// HLS recommendation: "In AVC video, you should have both a DTS and a
// PTS in each PES header".
// However, some streams do not comply with this recommendation.
DVLOG_IF(1, pts == kNoTimestamp) << "Each video PES should have a PTS";
if (pts != kNoTimestamp) {
TimingDesc timing_desc;
timing_desc.pts = pts;
timing_desc.dts = (dts != kNoTimestamp) ? dts : pts;
// Link the end of the byte queue with the incoming timing descriptor.
timing_desc_list_.push_back(
std::pair<int64_t, TimingDesc>(es_queue_->tail(), timing_desc));
// Warns if there are a large number of cached timestamps, which should be 1
// or 2 if everythings works as expected.
const size_t kWarningSize =
24; // An arbitrary number (it is 1 second for a fps of 24).
LOG_IF(WARNING, timing_desc_list_.size() >= kWarningSize)
<< "Unusually large number of cached timestamps ("
<< timing_desc_list_.size() << ").";
}
// Add the incoming bytes to the ES queue.
es_queue_->Push(buf, size);
return ParseInternal();
}
bool EsParserH26x::Flush() {
DVLOG(1) << "EsParserH26x::Flush";
// Simulate two additional AUDs to force emitting the last access unit
// which is assumed to be complete at this point.
// Two AUDs are needed because the exact size of a NAL unit can only be
// determined after seeing the next NAL unit, so we need a second AUD to
// finish the parsing of the first AUD.
if (type_ == Nalu::kH264) {
const uint8_t aud[] = {0x00, 0x00, 0x01, 0x09, 0x00, 0x00, 0x01, 0x09};
es_queue_->Push(aud, sizeof(aud));
} else {
DCHECK_EQ(Nalu::kH265, type_);
const uint8_t aud[] = {0x00, 0x00, 0x01, 0x46, 0x01,
0x00, 0x00, 0x01, 0x46, 0x01};
es_queue_->Push(aud, sizeof(aud));
}
RCHECK(ParseInternal());
if (pending_sample_) {
// Flush pending sample.
if (!pending_sample_duration_) {
pending_sample_duration_ = CalculateSampleDuration(pending_sample_pps_id_);
}
pending_sample_->set_duration(pending_sample_duration_);
emit_sample_cb_(std::move(pending_sample_));
}
return true;
}
void EsParserH26x::Reset() {
es_queue_.reset(new media::OffsetByteQueue());
current_search_position_ = 0;
current_access_unit_position_ = 0;
current_video_slice_info_.valid = false;
next_access_unit_position_set_ = false;
next_access_unit_position_ = 0;
current_nalu_info_.reset();
timing_desc_list_.clear();
pending_sample_ = std::shared_ptr<MediaSample>();
pending_sample_duration_ = 0;
waiting_for_key_frame_ = true;
}
bool EsParserH26x::SearchForNalu(uint64_t* position, Nalu* nalu) {
const uint8_t* es;
int es_size;
es_queue_->PeekAt(current_search_position_, &es, &es_size);
// Find a start code.
uint64_t start_code_offset;
uint8_t start_code_size;
const bool start_code_found = NaluReader::FindStartCode(
es, es_size, &start_code_offset, &start_code_size);
if (!start_code_found) {
// We didn't find a start code, so we don't have to search this data again.
if (es_size > kStartCodeSize)
current_search_position_ += es_size - kStartCodeSize;
return false;
}
// Ensure the next NAL unit is a real NAL unit.
const uint8_t* next_nalu_ptr = es + start_code_offset + start_code_size;
// This size is likely inaccurate, this is just to get the header info.
const int64_t next_nalu_size = es_size - start_code_offset - start_code_size;
if (next_nalu_size <
(type_ == Nalu::kH264 ? kH264NaluHeaderSize : kH265NaluHeaderSize)) {
// There was not enough data, wait for more.
return false;
}
// Update search position for next nalu.
current_search_position_ += start_code_offset + start_code_size;
// |next_nalu_info_| is made global intentionally to avoid repetitive memory
// allocation which could create memory fragments.
if (!next_nalu_info_)
next_nalu_info_.reset(new NaluInfo);
if (!next_nalu_info_->nalu.Initialize(type_, next_nalu_ptr, next_nalu_size)) {
// This NAL unit is invalid, skip it and search again.
return SearchForNalu(position, nalu);
}
next_nalu_info_->position = current_search_position_ - start_code_size;
next_nalu_info_->start_code_size = start_code_size;
const bool current_nalu_set = current_nalu_info_ ? true : false;
if (current_nalu_info_) {
// Starting position for the nalu including start code.
*position = current_nalu_info_->position;
// Update the NALU because the data pointer may have been invalidated.
const uint8_t* current_nalu_ptr =
next_nalu_ptr +
(current_nalu_info_->position + current_nalu_info_->start_code_size) -
current_search_position_;
const uint64_t current_nalu_size = next_nalu_info_->position -
current_nalu_info_->position -
current_nalu_info_->start_code_size;
CHECK(nalu->Initialize(type_, current_nalu_ptr, current_nalu_size));
}
current_nalu_info_.swap(next_nalu_info_);
return current_nalu_set ? true : SearchForNalu(position, nalu);
}
bool EsParserH26x::ParseInternal() {
uint64_t position;
Nalu nalu;
VideoSliceInfo video_slice_info;
while (SearchForNalu(&position, &nalu)) {
// ITU H.264 sec. 7.4.1.2.3
// H264: The first of the NAL units with |can_start_access_unit() == true|
// after the last VCL NAL unit of a primary coded picture specifies the
// start of a new access unit.
// ITU H.265 sec. 7.4.2.4.4
// H265: The first of the NAL units with |can_start_access_unit() == true|
// after the last VCL NAL unit preceding firstBlPicNalUnit (the first
// VCL NAL unit of a coded picture with nuh_layer_id equal to 0), if
// any, specifies the start of a new access unit.
if (nalu.can_start_access_unit()) {
if (!next_access_unit_position_set_) {
next_access_unit_position_set_ = true;
next_access_unit_position_ = position;
}
RCHECK(ProcessNalu(nalu, &video_slice_info));
if (nalu.is_vcl() && !video_slice_info.valid) {
// This could happen only if decoder config is not available yet. Drop
// this frame.
DCHECK(!current_video_slice_info_.valid);
next_access_unit_position_set_ = false;
continue;
}
} else if (nalu.is_vcl()) {
// This isn't the first VCL NAL unit. Next access unit should start after
// this NAL unit.
next_access_unit_position_set_ = false;
continue;
}
// AUD shall be the first NAL unit if present. There shall be at most one
// AUD in any access unit. We can emit the current access unit which shall
// not contain the AUD.
if (nalu.is_aud()) {
RCHECK(EmitCurrentAccessUnit());
continue;
}
// We can only determine if the current access unit ends after seeing
// another VCL NAL unit.
if (!video_slice_info.valid)
continue;
// Check if it is the first VCL NAL unit of a primary coded picture. It is
// always true for H265 as nuh_layer_id shall be == 0 at this point.
bool is_first_vcl_nalu = true;
if (type_ == Nalu::kH264) {
if (current_video_slice_info_.valid) {
// ITU H.264 sec. 7.4.1.2.4 Detection of the first VCL NAL unit of a
// primary coded picture. Only pps_id and frame_num are checked here.
is_first_vcl_nalu =
video_slice_info.frame_num != current_video_slice_info_.frame_num ||
video_slice_info.pps_id != current_video_slice_info_.pps_id;
}
}
if (!is_first_vcl_nalu) {
// This isn't the first VCL NAL unit. Next access unit should start after
// this NAL unit.
next_access_unit_position_set_ = false;
continue;
}
DCHECK(next_access_unit_position_set_);
RCHECK(EmitCurrentAccessUnit());
// Delete the data we have already processed.
es_queue_->Trim(next_access_unit_position_);
current_access_unit_position_ = next_access_unit_position_;
current_video_slice_info_ = video_slice_info;
next_access_unit_position_set_ = false;
}
return true;
}
bool EsParserH26x::EmitCurrentAccessUnit() {
if (current_video_slice_info_.valid) {
if (current_video_slice_info_.is_key_frame)
waiting_for_key_frame_ = false;
if (!waiting_for_key_frame_) {
RCHECK(
EmitFrame(current_access_unit_position_,
next_access_unit_position_ - current_access_unit_position_,
current_video_slice_info_.is_key_frame,
current_video_slice_info_.pps_id));
}
current_video_slice_info_.valid = false;
}
return true;
}
bool EsParserH26x::EmitFrame(int64_t access_unit_pos,
int access_unit_size,
bool is_key_frame,
int pps_id) {
// Get the access unit timing info.
TimingDesc current_timing_desc = {kNoTimestamp, kNoTimestamp};
while (!timing_desc_list_.empty() &&
timing_desc_list_.front().first <= access_unit_pos) {
current_timing_desc = timing_desc_list_.front().second;
timing_desc_list_.pop_front();
}
if (current_timing_desc.pts == kNoTimestamp)
return false;
// Emit a frame.
DVLOG(LOG_LEVEL_ES) << "Emit frame: stream_pos=" << access_unit_pos
<< " size=" << access_unit_size << " pts "
<< current_timing_desc.pts << " timing_desc_list size "
<< timing_desc_list_.size();
int es_size;
const uint8_t* es;
es_queue_->PeekAt(access_unit_pos, &es, &es_size);
// Convert frame to unit stream format.
std::vector<uint8_t> converted_frame;
if (!stream_converter_->ConvertByteStreamToNalUnitStream(
es, access_unit_size, &converted_frame)) {
DLOG(ERROR) << "Failure to convert video frame to unit stream format.";
return false;
}
// Update the video decoder configuration if needed.
RCHECK(UpdateVideoDecoderConfig(pps_id));
// Create the media sample, emitting always the previous sample after
// calculating its duration.
std::shared_ptr<MediaSample> media_sample = MediaSample::CopyFrom(
converted_frame.data(), converted_frame.size(), is_key_frame);
media_sample->set_dts(current_timing_desc.dts);
media_sample->set_pts(current_timing_desc.pts);
if (pending_sample_) {
if (media_sample->dts() <= pending_sample_->dts()) {
LOG(WARNING) << "[MPEG-2 TS] PID " << pid() << " dts "
<< media_sample->dts()
<< " less than or equal to previous dts "
<< pending_sample_->dts();
// Keep the sample but adjust the sample duration to a very small value,
// in case that the sample is still needed for the decoding afterwards.
const int64_t kArbitrarySmallDuration = 0.001 * kMpeg2Timescale; // 1ms.
pending_sample_->set_duration(kArbitrarySmallDuration);
} else {
int64_t sample_duration = media_sample->dts() - pending_sample_->dts();
pending_sample_->set_duration(sample_duration);
const int kArbitraryGapScale = 10;
if (pending_sample_duration_ &&
sample_duration > kArbitraryGapScale * pending_sample_duration_) {
LOG(WARNING) << "[MPEG-2 TS] PID " << pid() << " Possible GAP at dts "
<< pending_sample_->dts() << " with next sample at dts "
<< media_sample->dts() << " (difference "
<< sample_duration << ")";
}
pending_sample_duration_ = sample_duration;
}
emit_sample_cb_(std::move(pending_sample_));
}
pending_sample_ = media_sample;
pending_sample_pps_id_ = pps_id;
return true;
}
} // namespace mp2t
} // namespace media
} // namespace shaka