shaka-packager/packager/media/base/raw_key_source.cc

171 lines
6.1 KiB
C++

// Copyright 2016 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
#include "packager/media/base/raw_key_source.h"
#include <algorithm>
#include "packager/base/logging.h"
#include "packager/base/strings/string_number_conversions.h"
#include "packager/media/base/key_source.h"
#include "packager/media/base/raw_key_pssh_generator.h"
namespace {
const char kEmptyDrmLabel[] = "";
} // namespace
namespace shaka {
namespace media {
RawKeySource::~RawKeySource() {}
Status RawKeySource::FetchKeys(EmeInitDataType init_data_type,
const std::vector<uint8_t>& init_data) {
// Do nothing for raw key encryption/decryption.
return Status::OK;
}
Status RawKeySource::GetKey(const std::string& stream_label,
EncryptionKey* key) {
DCHECK(key);
// Try to find the key with label |stream_label|. If it is not available,
// fall back to the default empty label if it is available.
auto iter = encryption_key_map_.find(stream_label);
if (iter == encryption_key_map_.end()) {
iter = encryption_key_map_.find(kEmptyDrmLabel);
if (iter == encryption_key_map_.end()) {
return Status(error::NOT_FOUND,
"Key for '" + stream_label + "' was not found.");
}
}
*key = *iter->second;
return Status::OK;
}
Status RawKeySource::GetKey(const std::vector<uint8_t>& key_id,
EncryptionKey* key) {
DCHECK(key);
for (const auto& pair : encryption_key_map_) {
if (pair.second->key_id == key_id) {
*key = *pair.second;
return Status::OK;
}
}
return Status(error::INTERNAL_ERROR,
"Key for key_id=" + base::HexEncode(&key_id[0], key_id.size()) +
" was not found.");
}
Status RawKeySource::GetCryptoPeriodKey(uint32_t crypto_period_index,
const std::string& stream_label,
EncryptionKey* key) {
Status status = GetKey(stream_label, key);
if (!status.ok())
return status;
// A naive key rotation algorithm is implemented here by left rotating the
// key, key_id and pssh. Note that this implementation is only intended for
// testing purpose. The actual key rotation algorithm can be much more
// complicated.
LOG(WARNING)
<< "This naive key rotation algorithm should not be used in production.";
std::rotate(key->key_id.begin(),
key->key_id.begin() + (crypto_period_index % key->key_id.size()),
key->key_id.end());
std::rotate(key->key.begin(),
key->key.begin() + (crypto_period_index % key->key.size()),
key->key.end());
for (auto& key_system : key->key_system_info) {
if (key_system.system_id() !=
std::vector<uint8_t>(std::begin(kCommonSystemId),
std::end(kCommonSystemId))) {
LOG(WARNING) << "For key rotation with raw key source, only common key "
"system is supported.";
}
std::vector<uint8_t> pssh_data = key_system.pssh_data();
if (!pssh_data.empty()) {
std::rotate(pssh_data.begin(),
pssh_data.begin() + (crypto_period_index % pssh_data.size()),
pssh_data.end());
key_system.set_pssh_data(pssh_data);
}
// Rotate the key_ids in pssh as well if exists.
// Save a local copy of the key ids before clearing the key ids in
// |key_system|. The key ids will be updated and added back later.
std::vector<std::vector<uint8_t>> key_ids_copy = key_system.key_ids();
key_system.clear_key_ids();
for (std::vector<uint8_t>& key_id : key_ids_copy) {
std::rotate(key_id.begin(),
key_id.begin() + (crypto_period_index % key_id.size()),
key_id.end());
key_system.add_key_id(key_id);
}
}
return Status::OK;
}
std::unique_ptr<RawKeySource> RawKeySource::Create(
const RawKeyParams& raw_key,
int protection_systems_flags) {
std::vector<ProtectionSystemSpecificInfo> key_system_info;
bool pssh_provided = false;
if (!raw_key.pssh.empty()) {
pssh_provided = true;
if (!ProtectionSystemSpecificInfo::ParseBoxes(
raw_key.pssh.data(), raw_key.pssh.size(), &key_system_info)) {
LOG(ERROR) << "--pssh argument should be full PSSH boxes.";
return std::unique_ptr<RawKeySource>();
}
}
EncryptionKeyMap encryption_key_map;
for (const auto& entry : raw_key.key_map) {
const std::string& drm_label = entry.first;
const RawKeyParams::KeyInfo& key_pair = entry.second;
if (key_pair.key_id.size() != 16) {
LOG(ERROR) << "Invalid key ID size '" << key_pair.key_id.size()
<< "', must be 16 bytes.";
return std::unique_ptr<RawKeySource>();
}
if (key_pair.key.size() != 16) {
// CENC only supports AES-128, i.e. 16 bytes.
LOG(ERROR) << "Invalid key size '" << key_pair.key.size()
<< "', must be 16 bytes.";
return std::unique_ptr<RawKeySource>();
}
std::unique_ptr<EncryptionKey> encryption_key(new EncryptionKey);
encryption_key->key_id = key_pair.key_id;
encryption_key->key = key_pair.key;
encryption_key->iv = raw_key.iv;
encryption_key->key_system_info = key_system_info;
encryption_key_map[drm_label] = std::move(encryption_key);
}
// Generate common protection system if no other protection system is
// specified.
if (!pssh_provided && protection_systems_flags == NO_PROTECTION_SYSTEM_FLAG) {
protection_systems_flags = COMMON_PROTECTION_SYSTEM_FLAG;
}
return std::unique_ptr<RawKeySource>(new RawKeySource(
std::move(encryption_key_map), protection_systems_flags));
}
RawKeySource::RawKeySource() : KeySource(NO_PROTECTION_SYSTEM_FLAG) {}
RawKeySource::RawKeySource(EncryptionKeyMap&& encryption_key_map,
int protection_systems_flags)
: KeySource(protection_systems_flags),
encryption_key_map_(std::move(encryption_key_map)) {
UpdateProtectionSystemInfo(&encryption_key_map_);
}
} // namespace media
} // namespace shaka