247 lines
8.9 KiB
C++
247 lines
8.9 KiB
C++
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
// OneShotTimer and RepeatingTimer provide a simple timer API. As the names
|
|
// suggest, OneShotTimer calls you back once after a time delay expires.
|
|
// RepeatingTimer on the other hand calls you back periodically with the
|
|
// prescribed time interval.
|
|
//
|
|
// OneShotTimer and RepeatingTimer both cancel the timer when they go out of
|
|
// scope, which makes it easy to ensure that you do not get called when your
|
|
// object has gone out of scope. Just instantiate a OneShotTimer or
|
|
// RepeatingTimer as a member variable of the class for which you wish to
|
|
// receive timer events.
|
|
//
|
|
// Sample RepeatingTimer usage:
|
|
//
|
|
// class MyClass {
|
|
// public:
|
|
// void StartDoingStuff() {
|
|
// timer_.Start(FROM_HERE, TimeDelta::FromSeconds(1),
|
|
// this, &MyClass::DoStuff);
|
|
// }
|
|
// void StopDoingStuff() {
|
|
// timer_.Stop();
|
|
// }
|
|
// private:
|
|
// void DoStuff() {
|
|
// // This method is called every second to do stuff.
|
|
// ...
|
|
// }
|
|
// base::RepeatingTimer<MyClass> timer_;
|
|
// };
|
|
//
|
|
// Both OneShotTimer and RepeatingTimer also support a Reset method, which
|
|
// allows you to easily defer the timer event until the timer delay passes once
|
|
// again. So, in the above example, if 0.5 seconds have already passed,
|
|
// calling Reset on timer_ would postpone DoStuff by another 1 second. In
|
|
// other words, Reset is shorthand for calling Stop and then Start again with
|
|
// the same arguments.
|
|
//
|
|
// NOTE: These APIs are not thread safe. Always call from the same thread.
|
|
|
|
#ifndef BASE_TIMER_TIMER_H_
|
|
#define BASE_TIMER_TIMER_H_
|
|
|
|
// IMPORTANT: If you change timer code, make sure that all tests (including
|
|
// disabled ones) from timer_unittests.cc pass locally. Some are disabled
|
|
// because they're flaky on the buildbot, but when you run them locally you
|
|
// should be able to tell the difference.
|
|
|
|
#include "base/base_export.h"
|
|
#include "base/bind.h"
|
|
#include "base/bind_helpers.h"
|
|
#include "base/callback.h"
|
|
#include "base/location.h"
|
|
#include "base/time/time.h"
|
|
|
|
namespace base {
|
|
|
|
class BaseTimerTaskInternal;
|
|
class MessageLoop;
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// This class wraps MessageLoop::PostDelayedTask to manage delayed and repeating
|
|
// tasks. It must be destructed on the same thread that starts tasks. There are
|
|
// DCHECKs in place to verify this.
|
|
//
|
|
class BASE_EXPORT Timer {
|
|
public:
|
|
// Construct a timer in repeating or one-shot mode. Start or SetTaskInfo must
|
|
// be called later to set task info. |retain_user_task| determines whether the
|
|
// user_task is retained or reset when it runs or stops.
|
|
Timer(bool retain_user_task, bool is_repeating);
|
|
|
|
// Construct a timer with retained task info.
|
|
Timer(const tracked_objects::Location& posted_from,
|
|
TimeDelta delay,
|
|
const base::Closure& user_task,
|
|
bool is_repeating);
|
|
|
|
virtual ~Timer();
|
|
|
|
// Returns true if the timer is running (i.e., not stopped).
|
|
bool IsRunning() const {
|
|
return is_running_;
|
|
}
|
|
|
|
// Returns the current delay for this timer.
|
|
TimeDelta GetCurrentDelay() const {
|
|
return delay_;
|
|
}
|
|
|
|
// Start the timer to run at the given |delay| from now. If the timer is
|
|
// already running, it will be replaced to call the given |user_task|.
|
|
void Start(const tracked_objects::Location& posted_from,
|
|
TimeDelta delay,
|
|
const base::Closure& user_task);
|
|
|
|
// Call this method to stop and cancel the timer. It is a no-op if the timer
|
|
// is not running.
|
|
void Stop();
|
|
|
|
// Call this method to reset the timer delay. The user_task_ must be set. If
|
|
// the timer is not running, this will start it by posting a task.
|
|
void Reset();
|
|
|
|
const base::Closure& user_task() const { return user_task_; }
|
|
const TimeTicks& desired_run_time() const { return desired_run_time_; }
|
|
|
|
protected:
|
|
// Used to initiate a new delayed task. This has the side-effect of disabling
|
|
// scheduled_task_ if it is non-null.
|
|
void SetTaskInfo(const tracked_objects::Location& posted_from,
|
|
TimeDelta delay,
|
|
const base::Closure& user_task);
|
|
|
|
private:
|
|
friend class BaseTimerTaskInternal;
|
|
|
|
// Allocates a new scheduled_task_ and posts it on the current MessageLoop
|
|
// with the given |delay|. scheduled_task_ must be NULL. scheduled_run_time_
|
|
// and desired_run_time_ are reset to Now() + delay.
|
|
void PostNewScheduledTask(TimeDelta delay);
|
|
|
|
// Disable scheduled_task_ and abandon it so that it no longer refers back to
|
|
// this object.
|
|
void AbandonScheduledTask();
|
|
|
|
// Called by BaseTimerTaskInternal when the MessageLoop runs it.
|
|
void RunScheduledTask();
|
|
|
|
// Stop running task (if any) and abandon scheduled task (if any).
|
|
void StopAndAbandon() {
|
|
Stop();
|
|
AbandonScheduledTask();
|
|
}
|
|
|
|
// When non-NULL, the scheduled_task_ is waiting in the MessageLoop to call
|
|
// RunScheduledTask() at scheduled_run_time_.
|
|
BaseTimerTaskInternal* scheduled_task_;
|
|
|
|
// Location in user code.
|
|
tracked_objects::Location posted_from_;
|
|
// Delay requested by user.
|
|
TimeDelta delay_;
|
|
// user_task_ is what the user wants to be run at desired_run_time_.
|
|
base::Closure user_task_;
|
|
|
|
// The estimated time that the MessageLoop will run the scheduled_task_ that
|
|
// will call RunScheduledTask().
|
|
TimeTicks scheduled_run_time_;
|
|
|
|
// The desired run time of user_task_. The user may update this at any time,
|
|
// even if their previous request has not run yet. If desired_run_time_ is
|
|
// greater than scheduled_run_time_, a continuation task will be posted to
|
|
// wait for the remaining time. This allows us to reuse the pending task so as
|
|
// not to flood the MessageLoop with orphaned tasks when the user code
|
|
// excessively Stops and Starts the timer.
|
|
TimeTicks desired_run_time_;
|
|
|
|
// Thread ID of current MessageLoop for verifying single-threaded usage.
|
|
int thread_id_;
|
|
|
|
// Repeating timers automatically post the task again before calling the task
|
|
// callback.
|
|
const bool is_repeating_;
|
|
|
|
// If true, hold on to the user_task_ closure object for reuse.
|
|
const bool retain_user_task_;
|
|
|
|
// If true, user_task_ is scheduled to run sometime in the future.
|
|
bool is_running_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(Timer);
|
|
};
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// This class is an implementation detail of OneShotTimer and RepeatingTimer.
|
|
// Please do not use this class directly.
|
|
template <class Receiver, bool kIsRepeating>
|
|
class BaseTimerMethodPointer : public Timer {
|
|
public:
|
|
typedef void (Receiver::*ReceiverMethod)();
|
|
|
|
// This is here to work around the fact that Timer::Start is "hidden" by the
|
|
// Start definition below, rather than being overloaded.
|
|
// TODO(tim): We should remove uses of BaseTimerMethodPointer::Start below
|
|
// and convert callers to use the base::Closure version in Timer::Start,
|
|
// see bug 148832.
|
|
using Timer::Start;
|
|
|
|
BaseTimerMethodPointer() : Timer(kIsRepeating, kIsRepeating) {}
|
|
|
|
// Start the timer to run at the given |delay| from now. If the timer is
|
|
// already running, it will be replaced to call a task formed from
|
|
// |reviewer->*method|.
|
|
void Start(const tracked_objects::Location& posted_from,
|
|
TimeDelta delay,
|
|
Receiver* receiver,
|
|
ReceiverMethod method) {
|
|
Timer::Start(posted_from, delay,
|
|
base::Bind(method, base::Unretained(receiver)));
|
|
}
|
|
};
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// A simple, one-shot timer. See usage notes at the top of the file.
|
|
template <class Receiver>
|
|
class OneShotTimer : public BaseTimerMethodPointer<Receiver, false> {};
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// A simple, repeating timer. See usage notes at the top of the file.
|
|
template <class Receiver>
|
|
class RepeatingTimer : public BaseTimerMethodPointer<Receiver, true> {};
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// A Delay timer is like The Button from Lost. Once started, you have to keep
|
|
// calling Reset otherwise it will call the given method in the MessageLoop
|
|
// thread.
|
|
//
|
|
// Once created, it is inactive until Reset is called. Once |delay| seconds have
|
|
// passed since the last call to Reset, the callback is made. Once the callback
|
|
// has been made, it's inactive until Reset is called again.
|
|
//
|
|
// If destroyed, the timeout is canceled and will not occur even if already
|
|
// inflight.
|
|
template <class Receiver>
|
|
class DelayTimer : protected Timer {
|
|
public:
|
|
typedef void (Receiver::*ReceiverMethod)();
|
|
|
|
DelayTimer(const tracked_objects::Location& posted_from,
|
|
TimeDelta delay,
|
|
Receiver* receiver,
|
|
ReceiverMethod method)
|
|
: Timer(posted_from, delay,
|
|
base::Bind(method, base::Unretained(receiver)),
|
|
false) {}
|
|
|
|
void Reset() { Timer::Reset(); }
|
|
};
|
|
|
|
} // namespace base
|
|
|
|
#endif // BASE_TIMER_TIMER_H_
|