340 lines
12 KiB
C++
340 lines
12 KiB
C++
// Copyright 2018 Google LLC. All rights reserved.
|
|
//
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file or at
|
|
// https://developers.google.com/open-source/licenses/bsd
|
|
|
|
#include <packager/media/chunking/cue_alignment_handler.h>
|
|
|
|
#include <algorithm>
|
|
|
|
#include <absl/log/check.h>
|
|
|
|
#include <packager/macros.h>
|
|
#include <packager/status/status_macros.h>
|
|
|
|
namespace shaka {
|
|
namespace media {
|
|
namespace {
|
|
// The max number of samples that are allowed to be buffered before we shutdown
|
|
// because there is likely a problem with the content or how the pipeline was
|
|
// configured. This is about 20 seconds of buffer for audio with 48kHz.
|
|
const size_t kMaxBufferSize = 1000;
|
|
|
|
int64_t GetScaledTime(const StreamInfo& info, const StreamData& data) {
|
|
DCHECK(data.text_sample || data.media_sample);
|
|
|
|
if (data.text_sample) {
|
|
return data.text_sample->start_time();
|
|
}
|
|
|
|
if (info.stream_type() == kStreamText) {
|
|
// This class does not support splitting MediaSample at cue points, which is
|
|
// required for text stream. This class expects MediaSample to be converted
|
|
// to TextSample before passing to this class.
|
|
NOTIMPLEMENTED()
|
|
<< "A text streams should use text samples, not media samples.";
|
|
}
|
|
|
|
if (info.stream_type() == kStreamAudio) {
|
|
// Return the mid-point for audio because if the portion of the sample
|
|
// after the cue point is bigger than the portion of the sample before
|
|
// the cue point, the sample is placed after the cue.
|
|
return data.media_sample->pts() + data.media_sample->duration() / 2;
|
|
}
|
|
|
|
DCHECK_EQ(info.stream_type(), kStreamVideo);
|
|
return data.media_sample->pts();
|
|
}
|
|
|
|
double TimeInSeconds(const StreamInfo& info, const StreamData& data) {
|
|
const int64_t scaled_time = GetScaledTime(info, data);
|
|
const int32_t time_scale = info.time_scale();
|
|
|
|
return static_cast<double>(scaled_time) / time_scale;
|
|
}
|
|
|
|
double TextEndTimeInSeconds(const StreamInfo& info, const StreamData& data) {
|
|
DCHECK(data.text_sample);
|
|
|
|
const int64_t scaled_time = data.text_sample->EndTime();
|
|
const int32_t time_scale = info.time_scale();
|
|
|
|
return static_cast<double>(scaled_time) / time_scale;
|
|
}
|
|
|
|
Status GetNextCue(double hint,
|
|
SyncPointQueue* sync_points,
|
|
std::shared_ptr<const CueEvent>* out_cue) {
|
|
DCHECK(sync_points);
|
|
DCHECK(out_cue);
|
|
|
|
*out_cue = sync_points->GetNext(hint);
|
|
|
|
// |*out_cue| will only be null if the job was cancelled.
|
|
return *out_cue ? Status::OK
|
|
: Status(error::CANCELLED, "SyncPointQueue is cancelled.");
|
|
}
|
|
} // namespace
|
|
|
|
CueAlignmentHandler::CueAlignmentHandler(SyncPointQueue* sync_points)
|
|
: sync_points_(sync_points) {}
|
|
|
|
Status CueAlignmentHandler::InitializeInternal() {
|
|
sync_points_->AddThread();
|
|
stream_states_.resize(num_input_streams());
|
|
|
|
// Get the first hint for the stream. Use a negative hint so that if there is
|
|
// suppose to be a sync point at zero, we will still respect it.
|
|
hint_ = sync_points_->GetHint(-1);
|
|
|
|
return Status::OK;
|
|
}
|
|
|
|
Status CueAlignmentHandler::Process(std::unique_ptr<StreamData> data) {
|
|
switch (data->stream_data_type) {
|
|
case StreamDataType::kStreamInfo:
|
|
return OnStreamInfo(std::move(data));
|
|
case StreamDataType::kTextSample:
|
|
case StreamDataType::kMediaSample:
|
|
return OnSample(std::move(data));
|
|
default:
|
|
VLOG(3) << "Dropping unsupported data type "
|
|
<< static_cast<int>(data->stream_data_type);
|
|
return Status::OK;
|
|
}
|
|
}
|
|
|
|
Status CueAlignmentHandler::OnFlushRequest(size_t stream_index) {
|
|
stream_states_[stream_index].to_be_flushed = true;
|
|
|
|
// We need to wait for all stream to flush before we can flush each stream.
|
|
// This allows cached buffers to be cleared and cues to be properly
|
|
// synchronized and set on all streams.
|
|
for (const StreamState& stream_state : stream_states_) {
|
|
if (!stream_state.to_be_flushed) {
|
|
return Status::OK;
|
|
}
|
|
}
|
|
|
|
// Do a once over all the streams to ensure that their states are as we expect
|
|
// them. Video and non-video streams have different allowances here. Video
|
|
// should absolutely have no cues or samples where as non-video streams may
|
|
// have cues or samples.
|
|
for (StreamState& stream : stream_states_) {
|
|
DCHECK(stream.to_be_flushed);
|
|
|
|
if (stream.info->stream_type() == kStreamVideo) {
|
|
DCHECK_EQ(stream.samples.size(), 0u)
|
|
<< "Video streams should not store samples";
|
|
DCHECK_EQ(stream.cues.size(), 0u)
|
|
<< "Video streams should not store cues";
|
|
}
|
|
}
|
|
|
|
// It is possible that we did not get all the cues. |hint_| will get updated
|
|
// when we call |UseNextSyncPoint|.
|
|
while (sync_points_->HasMore(hint_)) {
|
|
std::shared_ptr<const CueEvent> next_cue;
|
|
RETURN_IF_ERROR(GetNextCue(hint_, sync_points_, &next_cue));
|
|
RETURN_IF_ERROR(UseNewSyncPoint(std::move(next_cue)));
|
|
}
|
|
|
|
// Now that there are new cues, it may be possible to dispatch some of the
|
|
// samples that may be left waiting.
|
|
for (StreamState& stream : stream_states_) {
|
|
RETURN_IF_ERROR(RunThroughSamples(&stream));
|
|
DCHECK_EQ(stream.samples.size(), 0u);
|
|
|
|
// Ignore extra cues at the end, except for text, as they will result in
|
|
// empty DASH Representations, which is not spec compliant.
|
|
// For text, if the cue is before the max end time, it will still be
|
|
// dispatched as the text samples intercepted by the cue can be split into
|
|
// two at the cue point.
|
|
for (auto& cue : stream.cues) {
|
|
// |max_text_sample_end_time_seconds| is always 0 for non-text samples.
|
|
if (cue->cue_event->time_in_seconds <
|
|
stream.max_text_sample_end_time_seconds) {
|
|
RETURN_IF_ERROR(Dispatch(std::move(cue)));
|
|
} else {
|
|
VLOG(1) << "Ignore extra cue in stream " << cue->stream_index
|
|
<< " with time " << cue->cue_event->time_in_seconds
|
|
<< "s in the end.";
|
|
}
|
|
}
|
|
stream.cues.clear();
|
|
}
|
|
|
|
return FlushAllDownstreams();
|
|
}
|
|
|
|
Status CueAlignmentHandler::OnStreamInfo(std::unique_ptr<StreamData> data) {
|
|
StreamState& stream_state = stream_states_[data->stream_index];
|
|
// Keep a copy of the stream info so that we can check type and check
|
|
// timescale.
|
|
stream_state.info = data->stream_info;
|
|
|
|
return Dispatch(std::move(data));
|
|
}
|
|
|
|
Status CueAlignmentHandler::OnVideoSample(std::unique_ptr<StreamData> sample) {
|
|
DCHECK(sample);
|
|
DCHECK(sample->media_sample);
|
|
|
|
const size_t stream_index = sample->stream_index;
|
|
StreamState& stream = stream_states_[stream_index];
|
|
|
|
const double sample_time = TimeInSeconds(*stream.info, *sample);
|
|
const bool is_key_frame = sample->media_sample->is_key_frame();
|
|
|
|
if (is_key_frame && sample_time >= hint_) {
|
|
auto next_sync = sync_points_->PromoteAt(sample_time);
|
|
|
|
if (!next_sync) {
|
|
LOG(ERROR) << "Failed to promote sync point at " << sample_time
|
|
<< ". This happens only if video streams are not GOP-aligned.";
|
|
return Status(error::INVALID_ARGUMENT,
|
|
"Streams are not properly GOP-aligned.");
|
|
}
|
|
|
|
RETURN_IF_ERROR(UseNewSyncPoint(std::move(next_sync)));
|
|
DCHECK_EQ(stream.cues.size(), 1u);
|
|
RETURN_IF_ERROR(Dispatch(std::move(stream.cues.front())));
|
|
stream.cues.pop_front();
|
|
}
|
|
|
|
return Dispatch(std::move(sample));
|
|
}
|
|
|
|
Status CueAlignmentHandler::OnNonVideoSample(
|
|
std::unique_ptr<StreamData> sample) {
|
|
DCHECK(sample);
|
|
DCHECK(sample->media_sample || sample->text_sample);
|
|
|
|
const size_t stream_index = sample->stream_index;
|
|
StreamState& stream_state = stream_states_[stream_index];
|
|
|
|
// Accept the sample. This will output it if it comes before the hint point or
|
|
// will cache it if it comes after the hint point.
|
|
RETURN_IF_ERROR(AcceptSample(std::move(sample), &stream_state));
|
|
|
|
// If all the streams are waiting on a hint, it means that none has next sync
|
|
// point determined. It also means that there are no video streams and we need
|
|
// to wait for all streams to converge on a hint so that we can get the next
|
|
// sync point.
|
|
if (EveryoneWaitingAtHint()) {
|
|
std::shared_ptr<const CueEvent> next_sync;
|
|
RETURN_IF_ERROR(GetNextCue(hint_, sync_points_, &next_sync));
|
|
RETURN_IF_ERROR(UseNewSyncPoint(next_sync));
|
|
}
|
|
|
|
return Status::OK;
|
|
}
|
|
|
|
Status CueAlignmentHandler::OnSample(std::unique_ptr<StreamData> sample) {
|
|
// There are two modes:
|
|
// 1. There is a video input.
|
|
// 2. There are no video inputs.
|
|
//
|
|
// When there is a video input, we rely on the video input get the next sync
|
|
// point and release all the samples.
|
|
//
|
|
// When there are no video inputs, we rely on the sync point queue to block
|
|
// us until there is a sync point.
|
|
|
|
const size_t stream_index = sample->stream_index;
|
|
|
|
if (sample->text_sample) {
|
|
StreamState& stream = stream_states_[stream_index];
|
|
stream.max_text_sample_end_time_seconds =
|
|
std::max(stream.max_text_sample_end_time_seconds,
|
|
TextEndTimeInSeconds(*stream.info, *sample));
|
|
}
|
|
|
|
const StreamType stream_type =
|
|
stream_states_[stream_index].info->stream_type();
|
|
const bool is_video = stream_type == kStreamVideo;
|
|
|
|
return is_video ? OnVideoSample(std::move(sample))
|
|
: OnNonVideoSample(std::move(sample));
|
|
}
|
|
|
|
Status CueAlignmentHandler::UseNewSyncPoint(
|
|
std::shared_ptr<const CueEvent> new_sync) {
|
|
hint_ = sync_points_->GetHint(new_sync->time_in_seconds);
|
|
DCHECK_GT(hint_, new_sync->time_in_seconds);
|
|
|
|
for (size_t stream_index = 0; stream_index < stream_states_.size();
|
|
stream_index++) {
|
|
StreamState& stream = stream_states_[stream_index];
|
|
stream.cues.push_back(StreamData::FromCueEvent(stream_index, new_sync));
|
|
|
|
RETURN_IF_ERROR(RunThroughSamples(&stream));
|
|
}
|
|
|
|
return Status::OK;
|
|
}
|
|
|
|
bool CueAlignmentHandler::EveryoneWaitingAtHint() const {
|
|
for (const StreamState& stream_state : stream_states_) {
|
|
if (stream_state.samples.empty()) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
Status CueAlignmentHandler::AcceptSample(std::unique_ptr<StreamData> sample,
|
|
StreamState* stream) {
|
|
DCHECK(sample);
|
|
DCHECK(sample->media_sample || sample->text_sample);
|
|
DCHECK(stream);
|
|
|
|
// Need to cache the stream index as we will lose the pointer when we add
|
|
// the sample to the queue.
|
|
const size_t stream_index = sample->stream_index;
|
|
|
|
stream->samples.push_back(std::move(sample));
|
|
|
|
if (stream->samples.size() > kMaxBufferSize) {
|
|
LOG(ERROR) << "Stream " << stream_index << " has buffered "
|
|
<< stream->samples.size() << " when the max is "
|
|
<< kMaxBufferSize;
|
|
return Status(error::INVALID_ARGUMENT,
|
|
"Streams are not properly multiplexed.");
|
|
}
|
|
|
|
return RunThroughSamples(stream);
|
|
}
|
|
|
|
Status CueAlignmentHandler::RunThroughSamples(StreamState* stream) {
|
|
// Step through all our samples until we find where we can insert the cue.
|
|
// Think of this as a merge sort.
|
|
while (stream->cues.size() && stream->samples.size()) {
|
|
const double cue_time = stream->cues.front()->cue_event->time_in_seconds;
|
|
const double sample_time =
|
|
TimeInSeconds(*stream->info, *stream->samples.front());
|
|
|
|
if (sample_time < cue_time) {
|
|
RETURN_IF_ERROR(Dispatch(std::move(stream->samples.front())));
|
|
stream->samples.pop_front();
|
|
} else {
|
|
RETURN_IF_ERROR(Dispatch(std::move(stream->cues.front())));
|
|
stream->cues.pop_front();
|
|
}
|
|
}
|
|
|
|
// If we still have samples, then it means that we sent out the cue and can
|
|
// now work up to the hint. So now send all samples that come before the hint
|
|
// downstream.
|
|
while (stream->samples.size() &&
|
|
TimeInSeconds(*stream->info, *stream->samples.front()) < hint_) {
|
|
RETURN_IF_ERROR(Dispatch(std::move(stream->samples.front())));
|
|
stream->samples.pop_front();
|
|
}
|
|
|
|
return Status::OK;
|
|
}
|
|
} // namespace media
|
|
} // namespace shaka
|