shaka-packager/packager/media/formats/mp4/encrypting_fragmenter.cc

356 lines
13 KiB
C++

// Copyright 2014 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
#include "packager/media/formats/mp4/encrypting_fragmenter.h"
#include <limits>
#include "packager/media/base/aes_encryptor.h"
#include "packager/media/base/aes_pattern_cryptor.h"
#include "packager/media/base/buffer_reader.h"
#include "packager/media/base/key_source.h"
#include "packager/media/base/media_sample.h"
#include "packager/media/codecs/nalu_reader.h"
#include "packager/media/codecs/vp8_parser.h"
#include "packager/media/codecs/vp9_parser.h"
#include "packager/media/formats/mp4/box_definitions.h"
namespace shaka {
namespace media {
namespace mp4 {
namespace {
const size_t kCencBlockSize = 16u;
// Adds one or more subsamples to |*subsamples|. This may add more than one
// if one of the values overflows the integer in the subsample.
void AddSubsamples(uint64_t clear_bytes,
uint64_t cipher_bytes,
std::vector<SubsampleEntry>* subsamples) {
CHECK_LT(cipher_bytes, std::numeric_limits<uint32_t>::max());
const uint64_t kUInt16Max = std::numeric_limits<uint16_t>::max();
while (clear_bytes > kUInt16Max) {
subsamples->push_back(SubsampleEntry(kUInt16Max, 0));
clear_bytes -= kUInt16Max;
}
if (clear_bytes > 0 || cipher_bytes > 0)
subsamples->push_back(SubsampleEntry(clear_bytes, cipher_bytes));
}
VideoCodec GetVideoCodec(const StreamInfo& stream_info) {
if (stream_info.stream_type() != kStreamVideo)
return kUnknownVideoCodec;
const VideoStreamInfo& video_stream_info =
static_cast<const VideoStreamInfo&>(stream_info);
return video_stream_info.codec();
}
uint8_t GetNaluLengthSize(const StreamInfo& stream_info) {
if (stream_info.stream_type() != kStreamVideo)
return 0;
const VideoStreamInfo& video_stream_info =
static_cast<const VideoStreamInfo&>(stream_info);
return video_stream_info.nalu_length_size();
}
} // namespace
EncryptingFragmenter::EncryptingFragmenter(
scoped_refptr<StreamInfo> info,
TrackFragment* traf,
scoped_ptr<EncryptionKey> encryption_key,
int64_t clear_time,
FourCC protection_scheme,
uint8_t crypt_byte_block,
uint8_t skip_byte_block)
: Fragmenter(info, traf),
info_(info),
encryption_key_(encryption_key.Pass()),
nalu_length_size_(GetNaluLengthSize(*info)),
video_codec_(GetVideoCodec(*info)),
clear_time_(clear_time),
protection_scheme_(protection_scheme),
crypt_byte_block_(crypt_byte_block),
skip_byte_block_(skip_byte_block) {
DCHECK(encryption_key_);
switch (video_codec_) {
case kCodecVP8:
vpx_parser_.reset(new VP8Parser);
break;
case kCodecVP9:
vpx_parser_.reset(new VP9Parser);
break;
case kCodecH264:
header_parser_.reset(new H264VideoSliceHeaderParser);
break;
case kCodecHVC1:
FALLTHROUGH_INTENDED;
case kCodecHEV1:
header_parser_.reset(new H265VideoSliceHeaderParser);
break;
default:
if (nalu_length_size_ > 0) {
LOG(WARNING) << "Unknown video codec '" << video_codec_
<< "', whole subsamples will be encrypted.";
}
}
}
EncryptingFragmenter::~EncryptingFragmenter() {}
Status EncryptingFragmenter::AddSample(scoped_refptr<MediaSample> sample) {
DCHECK(sample);
if (!fragment_initialized()) {
Status status = InitializeFragment(sample->dts());
if (!status.ok())
return status;
}
if (encryptor_) {
Status status = EncryptSample(sample);
if (!status.ok())
return status;
}
return Fragmenter::AddSample(sample);
}
Status EncryptingFragmenter::InitializeFragment(int64_t first_sample_dts) {
Status status = Fragmenter::InitializeFragment(first_sample_dts);
if (!status.ok())
return status;
if (header_parser_ && !header_parser_->Initialize(info_->extra_data()))
return Status(error::MUXER_FAILURE, "Fail to read SPS and PPS data.");
traf()->auxiliary_size.sample_info_sizes.clear();
traf()->auxiliary_offset.offsets.clear();
if (IsSubsampleEncryptionRequired()) {
traf()->sample_encryption.flags |=
SampleEncryption::kUseSubsampleEncryption;
}
traf()->sample_encryption.sample_encryption_entries.clear();
const bool enable_encryption = clear_time_ <= 0;
if (!enable_encryption) {
// This fragment should be in clear text.
// At most two sample description entries, an encrypted entry and a clear
// entry, are generated. The 1-based clear entry index is always 2.
const uint32_t kClearSampleDescriptionIndex = 2;
traf()->header.flags |=
TrackFragmentHeader::kSampleDescriptionIndexPresentMask;
traf()->header.sample_description_index = kClearSampleDescriptionIndex;
}
return PrepareFragmentForEncryption(enable_encryption);
}
void EncryptingFragmenter::FinalizeFragment() {
if (encryptor_) {
DCHECK_LE(clear_time_, 0);
FinalizeFragmentForEncryption();
} else {
DCHECK_GT(clear_time_, 0);
clear_time_ -= fragment_duration();
}
Fragmenter::FinalizeFragment();
}
Status EncryptingFragmenter::PrepareFragmentForEncryption(
bool enable_encryption) {
return (!enable_encryption || encryptor_) ? Status::OK : CreateEncryptor();
}
void EncryptingFragmenter::FinalizeFragmentForEncryption() {
// The offset will be adjusted in Segmenter after knowing moof size.
traf()->auxiliary_offset.offsets.push_back(0);
// For 'cbcs' scheme, Constant IVs SHALL be used.
const size_t per_sample_iv_size =
(protection_scheme_ == FOURCC_cbcs) ? 0 : encryptor_->iv().size();
traf()->sample_encryption.iv_size = per_sample_iv_size;
// Optimize saiz box.
SampleAuxiliaryInformationSize& saiz = traf()->auxiliary_size;
saiz.sample_count = traf()->runs[0].sample_sizes.size();
if (!saiz.sample_info_sizes.empty()) {
if (!OptimizeSampleEntries(&saiz.sample_info_sizes,
&saiz.default_sample_info_size)) {
saiz.default_sample_info_size = 0;
}
} else {
// |sample_info_sizes| table is filled in only for subsample encryption,
// otherwise |sample_info_size| is just the IV size.
DCHECK(!IsSubsampleEncryptionRequired());
saiz.default_sample_info_size = per_sample_iv_size;
}
// It should only happen with full sample encryption + constant iv, which is
// not a legal combination.
CHECK(!saiz.sample_info_sizes.empty() || saiz.default_sample_info_size != 0);
}
Status EncryptingFragmenter::CreateEncryptor() {
DCHECK(encryption_key_);
scoped_ptr<AesCryptor> encryptor;
switch (protection_scheme_) {
case FOURCC_cenc:
encryptor.reset(new AesCtrEncryptor);
break;
case FOURCC_cbc1:
encryptor.reset(new AesCbcEncryptor(kNoPadding));
break;
case FOURCC_cens:
encryptor.reset(new AesPatternCryptor(
crypt_byte_block(), skip_byte_block(),
AesPatternCryptor::kEncryptIfCryptByteBlockRemaining,
AesCryptor::kDontUseConstantIv,
scoped_ptr<AesCryptor>(new AesCtrEncryptor())));
break;
case FOURCC_cbcs:
encryptor.reset(new AesPatternCryptor(
crypt_byte_block(), skip_byte_block(),
AesPatternCryptor::kEncryptIfCryptByteBlockRemaining,
AesCryptor::kUseConstantIv,
scoped_ptr<AesCryptor>(new AesCbcEncryptor(kNoPadding))));
break;
default:
return Status(error::MUXER_FAILURE, "Unsupported protection scheme.");
}
DCHECK(!encryption_key_->iv.empty());
const bool initialized =
encryptor->InitializeWithIv(encryption_key_->key, encryption_key_->iv);
if (!initialized)
return Status(error::MUXER_FAILURE, "Failed to create the encryptor.");
encryptor_ = encryptor.Pass();
return Status::OK;
}
void EncryptingFragmenter::EncryptBytes(uint8_t* data, uint32_t size) {
DCHECK(encryptor_);
CHECK(encryptor_->Crypt(data, size, data));
}
Status EncryptingFragmenter::EncryptSample(scoped_refptr<MediaSample> sample) {
DCHECK(encryptor_);
SampleEncryptionEntry sample_encryption_entry;
// For 'cbcs' scheme, Constant IVs SHALL be used.
if (protection_scheme_ != FOURCC_cbcs)
sample_encryption_entry.initialization_vector = encryptor_->iv();
uint8_t* data = sample->writable_data();
if (IsSubsampleEncryptionRequired()) {
if (vpx_parser_) {
std::vector<VPxFrameInfo> vpx_frames;
if (!vpx_parser_->Parse(sample->data(), sample->data_size(),
&vpx_frames)) {
return Status(error::MUXER_FAILURE, "Failed to parse vpx frame.");
}
const bool is_superframe = vpx_frames.size() > 1;
for (const VPxFrameInfo& frame : vpx_frames) {
SubsampleEntry subsample;
subsample.clear_bytes = frame.uncompressed_header_size;
subsample.cipher_bytes =
frame.frame_size - frame.uncompressed_header_size;
// "VP Codec ISO Media File Format Binding" document requires that the
// encrypted bytes of each frame within the superframe must be block
// aligned so that the counter state can be computed for each frame
// within the superframe.
// ISO/IEC 23001-7:2016 10.2 'cbc1' 10.3 'cens'
// The BytesOfProtectedData size SHALL be a multiple of 16 bytes to
// avoid partial blocks in Subsamples.
if (is_superframe || protection_scheme_ == FOURCC_cbc1 ||
protection_scheme_ == FOURCC_cens) {
const uint16_t misalign_bytes =
subsample.cipher_bytes % kCencBlockSize;
subsample.clear_bytes += misalign_bytes;
subsample.cipher_bytes -= misalign_bytes;
}
sample_encryption_entry.subsamples.push_back(subsample);
if (subsample.cipher_bytes > 0)
EncryptBytes(data + subsample.clear_bytes, subsample.cipher_bytes);
data += frame.frame_size;
}
} else {
const Nalu::CodecType nalu_type =
(video_codec_ == kCodecHVC1 || video_codec_ == kCodecHEV1)
? Nalu::kH265
: Nalu::kH264;
NaluReader reader(nalu_type, nalu_length_size_, data,
sample->data_size());
// Store the current length of clear data. This is used to squash
// multiple unencrypted NAL units into fewer subsample entries.
uint64_t accumulated_clear_bytes = 0;
Nalu nalu;
NaluReader::Result result;
while ((result = reader.Advance(&nalu)) == NaluReader::kOk) {
if (nalu.is_video_slice()) {
// For video-slice NAL units, encrypt the video slice. This skips
// the frame header. If this is an unrecognized codec (e.g. H.265),
// the whole NAL unit will be encrypted.
const int64_t video_slice_header_size =
header_parser_ ? header_parser_->GetHeaderSize(nalu) : 0;
if (video_slice_header_size < 0)
return Status(error::MUXER_FAILURE, "Failed to read slice header.");
uint64_t current_clear_bytes =
nalu.header_size() + video_slice_header_size;
uint64_t cipher_bytes = nalu.payload_size() - video_slice_header_size;
// ISO/IEC 23001-7:2016 10.2 'cbc1' 10.3 'cens'
// The BytesOfProtectedData size SHALL be a multiple of 16 bytes to
// avoid partial blocks in Subsamples.
if (protection_scheme_ == FOURCC_cbc1 ||
protection_scheme_ == FOURCC_cens) {
const uint16_t misalign_bytes = cipher_bytes % kCencBlockSize;
current_clear_bytes += misalign_bytes;
cipher_bytes -= misalign_bytes;
}
const uint8_t* nalu_data = nalu.data() + current_clear_bytes;
EncryptBytes(const_cast<uint8_t*>(nalu_data), cipher_bytes);
AddSubsamples(
accumulated_clear_bytes + nalu_length_size_ + current_clear_bytes,
cipher_bytes, &sample_encryption_entry.subsamples);
accumulated_clear_bytes = 0;
} else {
// For non-video-slice NAL units, don't encrypt.
accumulated_clear_bytes +=
nalu_length_size_ + nalu.header_size() + nalu.payload_size();
}
}
if (result != NaluReader::kEOStream)
return Status(error::MUXER_FAILURE, "Failed to parse NAL units.");
AddSubsamples(accumulated_clear_bytes, 0,
&sample_encryption_entry.subsamples);
}
// The length of per-sample auxiliary datum, defined in CENC ch. 7.
traf()->auxiliary_size.sample_info_sizes.push_back(
sample_encryption_entry.ComputeSize());
} else {
EncryptBytes(data, sample->data_size());
}
traf()->sample_encryption.sample_encryption_entries.push_back(
sample_encryption_entry);
encryptor_->UpdateIv();
return Status::OK;
}
bool EncryptingFragmenter::IsSubsampleEncryptionRequired() {
return vpx_parser_ || nalu_length_size_ != 0;
}
} // namespace mp4
} // namespace media
} // namespace shaka