shaka-packager/packager/media/formats/wvm/wvm_media_parser.cc

1178 lines
40 KiB
C++

// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "packager/media/formats/wvm/wvm_media_parser.h"
#include <map>
#include <sstream>
#include <vector>
#include "packager/base/strings/string_number_conversions.h"
#include "packager/media/base/aes_decryptor.h"
#include "packager/media/base/audio_stream_info.h"
#include "packager/media/base/key_source.h"
#include "packager/media/base/media_sample.h"
#include "packager/media/base/video_stream_info.h"
#include "packager/media/codecs/aac_audio_specific_config.h"
#include "packager/media/codecs/avc_decoder_configuration_record.h"
#include "packager/media/codecs/es_descriptor.h"
#include "packager/media/formats/mp2t/adts_header.h"
#include "packager/status.h"
#define HAS_HEADER_EXTENSION(x) ((x != 0xBC) && (x != 0xBE) && (x != 0xBF) \
&& (x != 0xF0) && (x != 0xF2) && (x != 0xF8) \
&& (x != 0xFF))
namespace {
const uint32_t kMpeg2ClockRate = 90000;
const uint32_t kPesOptPts = 0x80;
const uint32_t kPesOptDts = 0x40;
const uint32_t kPesOptAlign = 0x04;
const uint32_t kPsmStreamId = 0xBC;
const uint32_t kPaddingStreamId = 0xBE;
const uint32_t kIndexMagic = 0x49444d69;
const uint32_t kIndexStreamId = 0xBF; // private_stream_2
const uint32_t kIndexVersion4HeaderSize = 12;
const uint32_t kEcmStreamId = 0xF0;
const uint32_t kV2MetadataStreamId = 0xF1; // EMM_stream
const uint32_t kScramblingBitsMask = 0x30;
const uint32_t kStartCode1 = 0x00;
const uint32_t kStartCode2 = 0x00;
const uint32_t kStartCode3 = 0x01;
const uint32_t kStartCode4Pack = 0xBA;
const uint32_t kStartCode4System = 0xBB;
const uint32_t kStartCode4ProgramEnd = 0xB9;
const uint32_t kPesStreamIdVideoMask = 0xF0;
const uint32_t kPesStreamIdVideo = 0xE0;
const uint32_t kPesStreamIdAudioMask = 0xE0;
const uint32_t kPesStreamIdAudio = 0xC0;
const uint32_t kVersion4 = 4;
const size_t kAdtsHeaderMinSize = 7;
const uint8_t kAacSampleSizeBits = 16;
// Applies to all video streams.
const uint8_t kNaluLengthSize = 4; // unit is bytes.
// Placeholder sampling frequency for all audio streams, which
// will be overwritten after filter parsing.
const uint32_t kDefaultSamplingFrequency = 100;
const uint16_t kEcmSizeBytes = 80;
const uint32_t kInitializationVectorSizeBytes = 16;
// ECM fields for processing.
const uint32_t kEcmContentKeySizeBytes = 16;
const uint32_t kEcmDCPFlagsSizeBytes = 3;
const uint32_t kEcmCCIFlagsSizeBytes = 1;
const uint32_t kEcmFlagsSizeBytes =
kEcmCCIFlagsSizeBytes + kEcmDCPFlagsSizeBytes;
const uint32_t kEcmPaddingSizeBytes = 12;
const uint32_t kAssetKeySizeBytes = 16;
// Default audio and video PES stream IDs.
const uint8_t kDefaultAudioStreamId = kPesStreamIdAudio;
const uint8_t kDefaultVideoStreamId = kPesStreamIdVideo;
enum Type {
Type_void = 0,
Type_uint8 = 1,
Type_int8 = 2,
Type_uint16 = 3,
Type_int16 = 4,
Type_uint32 = 5,
Type_int32 = 6,
Type_uint64 = 7,
Type_int64 = 8,
Type_string = 9,
Type_BinaryData = 10
};
} // namespace
namespace shaka {
namespace media {
namespace wvm {
WvmMediaParser::WvmMediaParser()
: is_initialized_(false),
parse_state_(StartCode1),
skip_bytes_(0),
metadata_is_complete_(false),
current_program_id_(0),
pes_stream_id_(0),
prev_pes_stream_id_(0),
pes_packet_bytes_(0),
pes_flags_1_(0),
pes_flags_2_(0),
prev_pes_flags_1_(0),
pes_header_data_bytes_(0),
timestamp_(0),
pts_(0),
dts_(0),
index_program_id_(0),
media_sample_(NULL),
crypto_unit_start_pos_(0),
stream_id_count_(0),
decryption_key_source_(NULL) {}
WvmMediaParser::~WvmMediaParser() {}
void WvmMediaParser::Init(const InitCB& init_cb,
const NewSampleCB& new_sample_cb,
KeySource* decryption_key_source) {
DCHECK(!is_initialized_);
DCHECK(!init_cb.is_null());
DCHECK(!new_sample_cb.is_null());
decryption_key_source_ = decryption_key_source;
init_cb_ = init_cb;
new_sample_cb_ = new_sample_cb;
}
bool WvmMediaParser::Parse(const uint8_t* buf, int size) {
size_t num_bytes = 0;
size_t prev_size = 0;
const uint8_t* read_ptr = buf;
const uint8_t* end = read_ptr + size;
while (read_ptr < end) {
switch (parse_state_) {
case StartCode1:
if (*read_ptr == kStartCode1) {
parse_state_ = StartCode2;
}
break;
case StartCode2:
if (*read_ptr == kStartCode2) {
parse_state_ = StartCode3;
} else {
parse_state_ = StartCode1;
}
break;
case StartCode3:
if (*read_ptr == kStartCode3) {
parse_state_ = StartCode4;
} else {
parse_state_ = StartCode1;
}
break;
case StartCode4:
switch (*read_ptr) {
case kStartCode4Pack:
parse_state_ = PackHeader1;
break;
case kStartCode4System:
parse_state_ = SystemHeader1;
break;
case kStartCode4ProgramEnd:
parse_state_ = ProgramEnd;
continue;
default:
parse_state_ = PesStreamId;
continue;
}
break;
case PackHeader1:
parse_state_ = PackHeader2;
break;
case PackHeader2:
parse_state_ = PackHeader3;
break;
case PackHeader3:
parse_state_ = PackHeader4;
break;
case PackHeader4:
parse_state_ = PackHeader5;
break;
case PackHeader5:
parse_state_ = PackHeader6;
break;
case PackHeader6:
parse_state_ = PackHeader7;
break;
case PackHeader7:
parse_state_ = PackHeader8;
break;
case PackHeader8:
parse_state_ = PackHeader9;
break;
case PackHeader9:
parse_state_ = PackHeader10;
break;
case PackHeader10:
skip_bytes_ = *read_ptr & 0x07;
parse_state_ = PackHeaderStuffingSkip;
break;
case SystemHeader1:
skip_bytes_ = *read_ptr;
skip_bytes_ <<= 8;
parse_state_ = SystemHeader2;
break;
case SystemHeader2:
skip_bytes_ |= *read_ptr;
parse_state_ = SystemHeaderSkip;
break;
case PackHeaderStuffingSkip:
if (end >= skip_bytes_ + read_ptr) {
read_ptr += skip_bytes_;
skip_bytes_ = 0;
parse_state_ = StartCode1;
} else {
skip_bytes_ -= (end - read_ptr);
read_ptr = end;
}
continue;
case SystemHeaderSkip:
if (end >= skip_bytes_ + read_ptr) {
read_ptr += skip_bytes_;
skip_bytes_ = 0;
parse_state_ = StartCode1;
} else {
uint32_t remaining_size = end - read_ptr;
skip_bytes_ -= remaining_size;
read_ptr = end;
}
continue;
case PesStreamId:
pes_stream_id_ = *read_ptr;
if (!metadata_is_complete_ &&
(pes_stream_id_ != kPsmStreamId) &&
(pes_stream_id_ != kIndexStreamId) &&
(pes_stream_id_ != kEcmStreamId) &&
(pes_stream_id_ != kV2MetadataStreamId) &&
(pes_stream_id_ != kPaddingStreamId)) {
metadata_is_complete_ = true;
}
parse_state_ = PesPacketLength1;
break;
case PesPacketLength1:
pes_packet_bytes_ = *read_ptr;
pes_packet_bytes_ <<= 8;
parse_state_ = PesPacketLength2;
break;
case PesPacketLength2:
pes_packet_bytes_ |= *read_ptr;
if (HAS_HEADER_EXTENSION(pes_stream_id_)) {
parse_state_ = PesExtension1;
} else {
prev_pes_flags_1_ = pes_flags_1_;
pes_flags_1_ = pes_flags_2_ = 0;
pes_header_data_bytes_ = 0;
parse_state_ = PesPayload;
}
break;
case PesExtension1:
prev_pes_flags_1_ = pes_flags_1_;
pes_flags_1_ = *read_ptr;
--pes_packet_bytes_;
parse_state_ = PesExtension2;
break;
case PesExtension2:
pes_flags_2_ = *read_ptr;
--pes_packet_bytes_;
parse_state_ = PesExtension3;
break;
case PesExtension3:
pes_header_data_bytes_ = *read_ptr;
--pes_packet_bytes_;
if (pes_flags_2_ & kPesOptPts) {
parse_state_ = Pts1;
} else {
parse_state_ = PesHeaderData;
}
break;
case Pts1:
timestamp_ = (*read_ptr & 0x0E);
--pes_header_data_bytes_;
--pes_packet_bytes_;
parse_state_ = Pts2;
break;
case Pts2:
timestamp_ <<= 7;
timestamp_ |= *read_ptr;
--pes_header_data_bytes_;
--pes_packet_bytes_;
parse_state_ = Pts3;
break;
case Pts3:
timestamp_ <<= 7;
timestamp_ |= *read_ptr >> 1;
--pes_header_data_bytes_;
--pes_packet_bytes_;
parse_state_ = Pts4;
break;
case Pts4:
timestamp_ <<= 8;
timestamp_ |= *read_ptr;
--pes_header_data_bytes_;
--pes_packet_bytes_;
parse_state_ = Pts5;
break;
case Pts5:
timestamp_ <<= 7;
timestamp_ |= *read_ptr >> 1;
pts_ = timestamp_;
--pes_header_data_bytes_;
--pes_packet_bytes_;
if (pes_flags_2_ & kPesOptDts) {
parse_state_ = Dts1;
} else {
dts_ = pts_;
parse_state_ = PesHeaderData;
}
break;
case Dts1:
timestamp_ = (*read_ptr & 0x0E);
--pes_header_data_bytes_;
--pes_packet_bytes_;
parse_state_ = Dts2;
break;
case Dts2:
timestamp_ <<= 7;
timestamp_ |= *read_ptr;
--pes_header_data_bytes_;
--pes_packet_bytes_;
parse_state_ = Dts3;
break;
case Dts3:
timestamp_ <<= 7;
timestamp_ |= *read_ptr >> 1;
--pes_header_data_bytes_;
--pes_packet_bytes_;
parse_state_ = Dts4;
break;
case Dts4:
timestamp_ <<= 8;
timestamp_ |= *read_ptr;
--pes_header_data_bytes_;
--pes_packet_bytes_;
parse_state_ = Dts5;
break;
case Dts5:
timestamp_ <<= 7;
timestamp_ |= *read_ptr >> 1;
dts_ = timestamp_;
--pes_header_data_bytes_;
--pes_packet_bytes_;
parse_state_ = PesHeaderData;
break;
case PesHeaderData:
num_bytes = end - read_ptr;
if (num_bytes >= pes_header_data_bytes_) {
num_bytes = pes_header_data_bytes_;
parse_state_ = PesPayload;
}
pes_header_data_bytes_ -= num_bytes;
pes_packet_bytes_ -= num_bytes;
read_ptr += num_bytes;
continue;
case PesPayload:
switch (pes_stream_id_) {
case kPsmStreamId:
psm_data_.clear();
parse_state_ = PsmPayload;
continue;
case kPaddingStreamId:
parse_state_ = Padding;
continue;
case kEcmStreamId:
ecm_.clear();
parse_state_ = EcmPayload;
continue;
case kIndexStreamId:
parse_state_ = IndexPayload;
continue;
default:
if (!DemuxNextPes(false)) {
return false;
}
parse_state_ = EsPayload;
}
continue;
case PsmPayload:
num_bytes = end - read_ptr;
if (num_bytes >= pes_packet_bytes_) {
num_bytes = pes_packet_bytes_;
parse_state_ = StartCode1;
}
if (num_bytes > 0) {
pes_packet_bytes_ -= num_bytes;
prev_size = psm_data_.size();
psm_data_.resize(prev_size + num_bytes);
memcpy(&psm_data_[prev_size], read_ptr, num_bytes);
}
read_ptr += num_bytes;
continue;
case EcmPayload:
num_bytes = end - read_ptr;
if (num_bytes >= pes_packet_bytes_) {
num_bytes = pes_packet_bytes_;
parse_state_ = StartCode1;
}
if (num_bytes > 0) {
pes_packet_bytes_ -= num_bytes;
prev_size = ecm_.size();
ecm_.resize(prev_size + num_bytes);
memcpy(&ecm_[prev_size], read_ptr, num_bytes);
}
if ((pes_packet_bytes_ == 0) && !ecm_.empty()) {
if (!ProcessEcm()) {
return(false);
}
}
read_ptr += num_bytes;
continue;
case IndexPayload:
num_bytes = end - read_ptr;
if (num_bytes >= pes_packet_bytes_) {
num_bytes = pes_packet_bytes_;
parse_state_ = StartCode1;
}
if (num_bytes > 0) {
pes_packet_bytes_ -= num_bytes;
prev_size = index_data_.size();
index_data_.resize(prev_size + num_bytes);
memcpy(&index_data_[prev_size], read_ptr, num_bytes);
}
if (pes_packet_bytes_ == 0 && !index_data_.empty()) {
if (!metadata_is_complete_) {
if (!ParseIndexEntry()) {
return false;
}
}
}
read_ptr += num_bytes;
continue;
case EsPayload:
num_bytes = end - read_ptr;
if (num_bytes >= pes_packet_bytes_) {
num_bytes = pes_packet_bytes_;
parse_state_ = StartCode1;
}
pes_packet_bytes_ -= num_bytes;
if (pes_stream_id_ != kV2MetadataStreamId) {
sample_data_.resize(sample_data_.size() + num_bytes);
memcpy(&sample_data_[sample_data_.size() - num_bytes], read_ptr,
num_bytes);
}
prev_pes_stream_id_ = pes_stream_id_;
read_ptr += num_bytes;
continue;
case Padding:
num_bytes = end - read_ptr;
if (num_bytes >= pes_packet_bytes_) {
num_bytes = pes_packet_bytes_;
parse_state_ = StartCode1;
}
pes_packet_bytes_ -= num_bytes;
read_ptr += num_bytes;
continue;
case ProgramEnd:
parse_state_ = StartCode1;
metadata_is_complete_ = true;
if (!DemuxNextPes(true)) {
return false;
}
if (!Flush()) {
return false;
}
// Reset.
dts_ = pts_ = 0;
parse_state_ = StartCode1;
prev_media_sample_data_.Reset();
current_program_id_++;
ecm_.clear();
index_data_.clear();
psm_data_.clear();
break;
default:
break;
}
++read_ptr;
}
return true;
}
bool WvmMediaParser::EmitLastSample(
uint32_t stream_id,
const std::shared_ptr<MediaSample>& new_sample) {
std::string key = base::UintToString(current_program_id_)
.append(":")
.append(base::UintToString(stream_id));
std::map<std::string, uint32_t>::iterator it =
program_demux_stream_map_.find(key);
if (it == program_demux_stream_map_.end())
return false;
return EmitSample(stream_id, (*it).second, new_sample, true);
}
bool WvmMediaParser::EmitPendingSamples() {
// Emit queued samples which were built when not initialized.
while (!media_sample_queue_.empty()) {
DemuxStreamIdMediaSample& demux_stream_media_sample =
media_sample_queue_.front();
if (!EmitSample(demux_stream_media_sample.parsed_audio_or_video_stream_id,
demux_stream_media_sample.demux_stream_id,
demux_stream_media_sample.media_sample,
false)) {
return false;
}
media_sample_queue_.pop_front();
}
return true;
}
bool WvmMediaParser::Flush() {
// Flush the last audio and video sample for current program.
// Reset the streamID when successfully emitted.
if (prev_media_sample_data_.audio_sample != NULL) {
if (!EmitLastSample(prev_pes_stream_id_,
prev_media_sample_data_.audio_sample)) {
LOG(ERROR) << "Did not emit last sample for audio stream with ID = "
<< prev_pes_stream_id_;
return false;
}
}
if (prev_media_sample_data_.video_sample != NULL) {
if (!EmitLastSample(prev_pes_stream_id_,
prev_media_sample_data_.video_sample)) {
LOG(ERROR) << "Did not emit last sample for video stream with ID = "
<< prev_pes_stream_id_;
return false;
}
}
return true;
}
bool WvmMediaParser::ParseIndexEntry() {
// Do not parse index entry at the beginning of any track *after* the first
// track.
if (current_program_id_ > 0) {
return true;
}
uint32_t index_size = 0;
if (index_data_.size() < kIndexVersion4HeaderSize) {
return false;
}
const uint8_t* read_ptr = index_data_.data();
if (ntohlFromBuffer(read_ptr) != kIndexMagic) {
index_data_.clear();
return false;
}
read_ptr += 4;
uint32_t version = ntohlFromBuffer(read_ptr);
read_ptr += 4;
if (version == kVersion4) {
index_size = kIndexVersion4HeaderSize + ntohlFromBuffer(read_ptr);
if (index_data_.size() < index_size) {
// We do not yet have the full index. Keep accumulating index data.
return true;
}
read_ptr += sizeof(uint32_t);
// Index metadata
uint32_t index_metadata_max_size = index_size - kIndexVersion4HeaderSize;
if (index_metadata_max_size < sizeof(uint8_t)) {
index_data_.clear();
return false;
}
uint64_t track_duration = 0;
uint32_t trick_play_factor = 0;
uint32_t sampling_frequency = kDefaultSamplingFrequency;
uint32_t time_scale = kMpeg2ClockRate;
uint16_t video_width = 0;
uint16_t video_height = 0;
uint32_t pixel_width = 0;
uint32_t pixel_height = 0;
uint8_t nalu_length_size = kNaluLengthSize;
uint8_t num_channels = 0;
int audio_pes_stream_id = 0;
int video_pes_stream_id = 0;
bool has_video = false;
bool has_audio = false;
std::vector<uint8_t> audio_codec_config;
std::vector<uint8_t> video_codec_config;
uint8_t num_index_entries = *read_ptr;
++read_ptr;
--index_metadata_max_size;
for (uint8_t idx = 0; idx < num_index_entries; ++idx) {
if (index_metadata_max_size < (2 * sizeof(uint8_t)) + sizeof(uint32_t)) {
return false;
}
uint8_t tag = *read_ptr;
++read_ptr;
uint8_t type = *read_ptr;
++read_ptr;
uint32_t length = ntohlFromBuffer(read_ptr);
read_ptr += sizeof(uint32_t);
index_metadata_max_size -= (2 * sizeof(uint8_t)) + sizeof(uint32_t);
if (index_metadata_max_size < length) {
return false;
}
int64_t value = 0;
Tag tagtype = Unset;
std::vector<uint8_t> binary_data;
switch (Type(type)) {
case Type_uint8:
if (length == sizeof(uint8_t)) {
tagtype = GetTag(tag, length, read_ptr, &value);
} else {
return false;
}
break;
case Type_int8:
if (length == sizeof(int8_t)) {
tagtype = GetTag(tag, length, read_ptr, &value);
} else {
return false;
}
break;
case Type_uint16:
if (length == sizeof(uint16_t)) {
tagtype = GetTag(tag, length, read_ptr, &value);
} else {
return false;
}
break;
case Type_int16:
if (length == sizeof(int16_t)) {
tagtype = GetTag(tag, length, read_ptr, &value);
} else {
return false;
}
break;
case Type_uint32:
if (length == sizeof(uint32_t)) {
tagtype = GetTag(tag, length, read_ptr, &value);
} else {
return false;
}
break;
case Type_int32:
if (length == sizeof(int32_t)) {
tagtype = GetTag(tag, length, read_ptr, &value);
} else {
return false;
}
break;
case Type_uint64:
if (length == sizeof(uint64_t)) {
tagtype = GetTag(tag, length, read_ptr, &value);
} else {
return false;
}
break;
case Type_int64:
if (length == sizeof(int64_t)) {
tagtype = GetTag(tag, length, read_ptr, &value);
} else {
return false;
}
break;
case Type_string:
case Type_BinaryData:
binary_data.assign(read_ptr, read_ptr + length);
tagtype = Tag(tag);
break;
default:
break;
}
switch (tagtype) {
case TrackDuration:
track_duration = value;
break;
case TrackTrickPlayFactor:
trick_play_factor = value;
break;
case VideoStreamId:
video_pes_stream_id = value;
break;
case AudioStreamId:
audio_pes_stream_id = value;
break;
case VideoWidth:
video_width = (uint16_t)value;
break;
case VideoHeight:
video_height = (uint16_t)value;
break;
case AudioNumChannels:
num_channels = (uint8_t)value;
break;
case VideoType:
has_video = true;
break;
case AudioType:
has_audio = true;
break;
case VideoPixelWidth:
pixel_width = static_cast<uint32_t>(value);
break;
case VideoPixelHeight:
pixel_height = static_cast<uint32_t>(value);
break;
case Audio_EsDescriptor: {
ESDescriptor descriptor;
if (!descriptor.Parse(binary_data)) {
LOG(ERROR) <<
"Could not extract AudioSpecificConfig from ES_Descriptor";
return false;
}
audio_codec_config = descriptor.decoder_specific_info();
break;
}
case Audio_EC3SpecificData:
case Audio_DtsSpecificData:
case Audio_AC3SpecificData:
LOG(ERROR) << "Audio type not supported.";
return false;
case Video_AVCDecoderConfigurationRecord:
video_codec_config = binary_data;
break;
default:
break;
}
read_ptr += length;
index_metadata_max_size -= length;
}
// End Index metadata
index_size = read_ptr - index_data_.data();
if (has_video) {
stream_infos_.emplace_back(new VideoStreamInfo(
stream_id_count_, time_scale, track_duration, kCodecH264,
byte_to_unit_stream_converter_.stream_format(), std::string(),
video_codec_config.data(), video_codec_config.size(), video_width,
video_height, pixel_width, pixel_height, trick_play_factor,
nalu_length_size, std::string(),
decryption_key_source_ ? false : true));
program_demux_stream_map_[base::UintToString(index_program_id_) + ":" +
base::UintToString(
video_pes_stream_id
? video_pes_stream_id
: kDefaultVideoStreamId)] =
stream_id_count_++;
}
if (has_audio) {
const Codec audio_codec = kCodecAAC;
// TODO(beil): Pass in max and average bitrate in wvm container.
stream_infos_.emplace_back(new AudioStreamInfo(
stream_id_count_, time_scale, track_duration, audio_codec,
std::string(), audio_codec_config.data(), audio_codec_config.size(),
kAacSampleSizeBits, num_channels, sampling_frequency,
0 /* seek preroll */, 0 /* codec delay */, 0 /* max bitrate */,
0 /* avg bitrate */, std::string(),
decryption_key_source_ ? false : true));
program_demux_stream_map_[base::UintToString(index_program_id_) + ":" +
base::UintToString(
audio_pes_stream_id
? audio_pes_stream_id
: kDefaultAudioStreamId)] =
stream_id_count_++;
}
}
index_program_id_++;
index_data_.clear();
return true;
}
bool WvmMediaParser::DemuxNextPes(bool is_program_end) {
bool output_encrypted_sample = false;
if (!sample_data_.empty() && (prev_pes_flags_1_ & kScramblingBitsMask)) {
// Decrypt crypto unit.
if (!content_decryptor_) {
output_encrypted_sample = true;
} else {
content_decryptor_->Crypt(&sample_data_[crypto_unit_start_pos_],
sample_data_.size() - crypto_unit_start_pos_,
&sample_data_[crypto_unit_start_pos_]);
}
}
// Demux media sample if we are at program end or if we are not at a
// continuation PES.
if ((pes_flags_2_ & kPesOptPts) || is_program_end) {
if (!sample_data_.empty()) {
if (!Output(output_encrypted_sample)) {
return false;
}
}
StartMediaSampleDemux();
}
crypto_unit_start_pos_ = sample_data_.size();
return true;
}
void WvmMediaParser::StartMediaSampleDemux() {
bool is_key_frame = ((pes_flags_1_ & kPesOptAlign) != 0);
media_sample_ = MediaSample::CreateEmptyMediaSample();
media_sample_->set_dts(dts_);
media_sample_->set_pts(pts_);
media_sample_->set_is_key_frame(is_key_frame);
sample_data_.clear();
}
bool WvmMediaParser::Output(bool output_encrypted_sample) {
if (output_encrypted_sample) {
media_sample_->SetData(sample_data_.data(), sample_data_.size());
media_sample_->set_is_encrypted(true);
} else {
if ((prev_pes_stream_id_ & kPesStreamIdVideoMask) == kPesStreamIdVideo) {
// Convert video stream to unit stream and get config.
std::vector<uint8_t> nal_unit_stream;
if (!byte_to_unit_stream_converter_.ConvertByteStreamToNalUnitStream(
sample_data_.data(), sample_data_.size(), &nal_unit_stream)) {
LOG(ERROR) << "Could not convert h.264 byte stream sample";
return false;
}
media_sample_->SetData(nal_unit_stream.data(), nal_unit_stream.size());
if (!is_initialized_) {
// Set extra data for video stream from AVC Decoder Config Record.
// Also, set codec string from the AVC Decoder Config Record.
std::vector<uint8_t> decoder_config_record;
byte_to_unit_stream_converter_.GetDecoderConfigurationRecord(
&decoder_config_record);
for (uint32_t i = 0; i < stream_infos_.size(); i++) {
if (stream_infos_[i]->stream_type() == kStreamVideo &&
stream_infos_[i]->codec_string().empty()) {
const std::vector<uint8_t>* stream_config;
if (stream_infos_[i]->codec_config().empty()) {
// Decoder config record not available for stream. Use the one
// computed from the first video stream.
stream_infos_[i]->set_codec_config(decoder_config_record);
stream_config = &decoder_config_record;
} else {
// Use stream-specific config record.
stream_config = &stream_infos_[i]->codec_config();
}
DCHECK(stream_config);
VideoStreamInfo* video_stream_info =
reinterpret_cast<VideoStreamInfo*>(stream_infos_[i].get());
AVCDecoderConfigurationRecord avc_config;
if (!avc_config.Parse(*stream_config)) {
LOG(WARNING) << "Failed to parse AVCDecoderConfigurationRecord. "
"Using computed configuration record instead.";
video_stream_info->set_codec_config(decoder_config_record);
if (!avc_config.Parse(decoder_config_record)) {
LOG(ERROR) << "Failed to parse AVCDecoderConfigurationRecord.";
return false;
}
}
const FourCC codec_fourcc =
byte_to_unit_stream_converter_.stream_format() ==
H26xStreamFormat::kNalUnitStreamWithParameterSetNalus
? FOURCC_avc3
: FOURCC_avc1;
video_stream_info->set_codec_string(
avc_config.GetCodecString(codec_fourcc));
if (avc_config.pixel_width() != video_stream_info->pixel_width() ||
avc_config.pixel_height() !=
video_stream_info->pixel_height()) {
LOG_IF(WARNING, video_stream_info->pixel_width() != 0 ||
video_stream_info->pixel_height() != 0)
<< "Pixel aspect ratio in WVM metadata ("
<< video_stream_info->pixel_width() << ","
<< video_stream_info->pixel_height()
<< ") does not match with SAR in "
"AVCDecoderConfigurationRecord ("
<< avc_config.pixel_width() << ","
<< avc_config.pixel_height()
<< "). Use AVCDecoderConfigurationRecord.";
video_stream_info->set_pixel_width(avc_config.pixel_width());
video_stream_info->set_pixel_height(avc_config.pixel_height());
}
if (avc_config.coded_width() != video_stream_info->width() ||
avc_config.coded_height() != video_stream_info->height()) {
LOG(WARNING) << "Resolution in WVM metadata ("
<< video_stream_info->width() << ","
<< video_stream_info->height()
<< ") does not match with resolution in "
"AVCDecoderConfigurationRecord ("
<< avc_config.coded_width() << ","
<< avc_config.coded_height()
<< "). Use AVCDecoderConfigurationRecord.";
video_stream_info->set_width(avc_config.coded_width());
video_stream_info->set_height(avc_config.coded_height());
}
}
}
}
} else if ((prev_pes_stream_id_ & kPesStreamIdAudioMask) ==
kPesStreamIdAudio) {
// Set data on the audio stream.
int frame_size = static_cast<int>(mp2t::AdtsHeader::GetAdtsFrameSize(
sample_data_.data(), kAdtsHeaderMinSize));
mp2t::AdtsHeader adts_header;
const uint8_t* frame_ptr = sample_data_.data();
if (!adts_header.Parse(frame_ptr, frame_size)) {
LOG(ERROR) << "Could not parse ADTS header";
return false;
}
size_t header_size = adts_header.GetAdtsHeaderSize(frame_ptr,
frame_size);
media_sample_->SetData(frame_ptr + header_size, frame_size - header_size);
if (!is_initialized_) {
for (uint32_t i = 0; i < stream_infos_.size(); i++) {
if (stream_infos_[i]->stream_type() == kStreamAudio &&
stream_infos_[i]->codec_string().empty()) {
AudioStreamInfo* audio_stream_info =
reinterpret_cast<AudioStreamInfo*>(stream_infos_[i].get());
if (audio_stream_info->codec_config().empty()) {
// Set AudioStreamInfo fields using information from the ADTS
// header.
audio_stream_info->set_sampling_frequency(
adts_header.GetSamplingFrequency());
std::vector<uint8_t> audio_specific_config;
if (!adts_header.GetAudioSpecificConfig(&audio_specific_config)) {
LOG(ERROR) << "Could not compute AACAudiospecificconfig";
return false;
}
audio_stream_info->set_codec_config(audio_specific_config);
audio_stream_info->set_codec_string(
AudioStreamInfo::GetCodecString(
kCodecAAC, adts_header.GetObjectType()));
} else {
// Set AudioStreamInfo fields using information from the
// AACAudioSpecificConfig record.
AACAudioSpecificConfig aac_config;
if (!aac_config.Parse(stream_infos_[i]->codec_config())) {
LOG(ERROR) << "Could not parse AACAudioSpecificconfig";
return false;
}
audio_stream_info->set_sampling_frequency(
aac_config.GetSamplesPerSecond());
audio_stream_info->set_codec_string(
AudioStreamInfo::GetCodecString(
kCodecAAC, aac_config.GetAudioObjectType()));
}
}
}
}
}
}
if (!is_initialized_) {
bool all_streams_have_config = true;
// Check if all collected stream infos have codec_config set.
for (uint32_t i = 0; i < stream_infos_.size(); i++) {
if (stream_infos_[i]->codec_string().empty()) {
all_streams_have_config = false;
break;
}
}
if (all_streams_have_config) {
init_cb_.Run(stream_infos_);
is_initialized_ = true;
}
}
DCHECK_GT(media_sample_->data_size(), 0UL);
std::string key = base::UintToString(current_program_id_).append(":")
.append(base::UintToString(prev_pes_stream_id_));
std::map<std::string, uint32_t>::iterator it =
program_demux_stream_map_.find(key);
if (it == program_demux_stream_map_.end()) {
// TODO(ramjic): Log error message here and in other error cases through
// this method.
return false;
}
DemuxStreamIdMediaSample demux_stream_media_sample;
demux_stream_media_sample.parsed_audio_or_video_stream_id =
prev_pes_stream_id_;
demux_stream_media_sample.demux_stream_id = (*it).second;
demux_stream_media_sample.media_sample = media_sample_;
// Check if sample can be emitted.
if (!is_initialized_) {
media_sample_queue_.push_back(demux_stream_media_sample);
} else {
// flush the sample queue and emit all queued samples.
while (!media_sample_queue_.empty()) {
if (!EmitPendingSamples())
return false;
}
// Emit current sample.
if (!EmitSample(prev_pes_stream_id_, (*it).second, media_sample_, false))
return false;
}
return true;
}
bool WvmMediaParser::EmitSample(uint32_t parsed_audio_or_video_stream_id,
uint32_t stream_id,
const std::shared_ptr<MediaSample>& new_sample,
bool isLastSample) {
DCHECK(new_sample);
if (isLastSample) {
if ((parsed_audio_or_video_stream_id & kPesStreamIdVideoMask) ==
kPesStreamIdVideo) {
new_sample->set_duration(prev_media_sample_data_.video_sample_duration);
} else if ((parsed_audio_or_video_stream_id & kPesStreamIdAudioMask) ==
kPesStreamIdAudio) {
new_sample->set_duration(prev_media_sample_data_.audio_sample_duration);
}
if (!new_sample_cb_.Run(stream_id, new_sample)) {
LOG(ERROR) << "Failed to process the last sample.";
return false;
}
return true;
}
// Cannot emit current sample. Compute duration first and then,
// emit previous sample.
if ((parsed_audio_or_video_stream_id & kPesStreamIdVideoMask) ==
kPesStreamIdVideo) {
if (prev_media_sample_data_.video_sample == NULL) {
prev_media_sample_data_.video_sample = new_sample;
prev_media_sample_data_.video_stream_id = stream_id;
return true;
}
prev_media_sample_data_.video_sample->set_duration(
new_sample->dts() - prev_media_sample_data_.video_sample->dts());
prev_media_sample_data_.video_sample_duration =
prev_media_sample_data_.video_sample->duration();
if (!new_sample_cb_.Run(prev_media_sample_data_.video_stream_id,
prev_media_sample_data_.video_sample)) {
LOG(ERROR) << "Failed to process the video sample.";
return false;
}
prev_media_sample_data_.video_sample = new_sample;
prev_media_sample_data_.video_stream_id = stream_id;
} else if ((parsed_audio_or_video_stream_id & kPesStreamIdAudioMask) ==
kPesStreamIdAudio) {
if (prev_media_sample_data_.audio_sample == NULL) {
prev_media_sample_data_.audio_sample = new_sample;
prev_media_sample_data_.audio_stream_id = stream_id;
return true;
}
prev_media_sample_data_.audio_sample->set_duration(
new_sample->dts() - prev_media_sample_data_.audio_sample->dts());
prev_media_sample_data_.audio_sample_duration =
prev_media_sample_data_.audio_sample->duration();
if (!new_sample_cb_.Run(prev_media_sample_data_.audio_stream_id,
prev_media_sample_data_.audio_sample)) {
LOG(ERROR) << "Failed to process the audio sample.";
return false;
}
prev_media_sample_data_.audio_sample = new_sample;
prev_media_sample_data_.audio_stream_id = stream_id;
}
return true;
}
bool WvmMediaParser::GetAssetKey(const uint8_t* asset_id,
EncryptionKey* encryption_key) {
DCHECK(decryption_key_source_);
Status status = decryption_key_source_->FetchKeys(
EmeInitDataType::WIDEVINE_CLASSIC,
std::vector<uint8_t>(asset_id, asset_id + sizeof(uint32_t)));
if (!status.ok()) {
LOG(ERROR) << "Fetch Key(s) failed for AssetID = "
<< ntohlFromBuffer(asset_id) << ", error = " << status;
return false;
}
const char kHdStreamLabel[] = "HD";
status = decryption_key_source_->GetKey(kHdStreamLabel, encryption_key);
if (!status.ok()) {
LOG(ERROR) << "Fetch Key(s) failed for AssetID = "
<< ntohlFromBuffer(asset_id) << ", error = " << status;
return false;
}
return true;
}
bool WvmMediaParser::ProcessEcm() {
// An error will be returned later if the samples need to be decrypted.
if (!decryption_key_source_)
return true;
if (current_program_id_ > 0) {
return true;
}
if (ecm_.size() != kEcmSizeBytes) {
LOG(ERROR) << "Unexpected ECM size = " << ecm_.size()
<< ", expected size = " << kEcmSizeBytes;
return false;
}
const uint8_t* ecm_data = ecm_.data();
DCHECK(ecm_data);
ecm_data += sizeof(uint32_t); // old version field - skip.
ecm_data += sizeof(uint32_t); // clear lead - skip.
ecm_data += sizeof(uint32_t); // system id(includes ECM version) - skip.
EncryptionKey encryption_key;
if (!GetAssetKey(ecm_data, &encryption_key)) {
return false;
}
if (encryption_key.key.size() < kAssetKeySizeBytes) {
LOG(ERROR) << "Asset Key size of " << encryption_key.key.size()
<< " for AssetID = " << ntohlFromBuffer(ecm_data)
<< " is less than minimum asset key size.";
return false;
}
ecm_data += sizeof(uint32_t); // asset_id.
// Legacy WVM content may have asset keys > 16 bytes.
// Use only the first 16 bytes of the asset key to get
// the content key.
std::vector<uint8_t> asset_key(
encryption_key.key.begin(),
encryption_key.key.begin() + kAssetKeySizeBytes);
// WVM format always uses all zero IV.
std::vector<uint8_t> zero_iv(kInitializationVectorSizeBytes, 0);
AesCbcDecryptor asset_decryptor(kCtsPadding, AesCryptor::kUseConstantIv);
if (!asset_decryptor.InitializeWithIv(asset_key, zero_iv)) {
LOG(ERROR) << "Failed to initialize asset_decryptor.";
return false;
}
const size_t content_key_buffer_size =
kEcmFlagsSizeBytes + kEcmContentKeySizeBytes +
kEcmPaddingSizeBytes; // flags + contentKey + padding.
std::vector<uint8_t> content_key_buffer(content_key_buffer_size);
CHECK(asset_decryptor.Crypt(ecm_data, content_key_buffer_size,
content_key_buffer.data()));
std::vector<uint8_t> decrypted_content_key_vec(
content_key_buffer.begin() + 4,
content_key_buffer.begin() + 20);
std::unique_ptr<AesCbcDecryptor> content_decryptor(
new AesCbcDecryptor(kCtsPadding, AesCryptor::kUseConstantIv));
if (!content_decryptor->InitializeWithIv(decrypted_content_key_vec,
zero_iv)) {
LOG(ERROR) << "Failed to initialize content decryptor.";
return false;
}
content_decryptor_ = std::move(content_decryptor);
return true;
}
DemuxStreamIdMediaSample::DemuxStreamIdMediaSample() :
demux_stream_id(0),
parsed_audio_or_video_stream_id(0) {}
DemuxStreamIdMediaSample::~DemuxStreamIdMediaSample() {}
PrevSampleData::PrevSampleData() {
Reset();
}
PrevSampleData::~PrevSampleData() {}
void PrevSampleData::Reset() {
audio_sample = NULL;
video_sample = NULL;
audio_stream_id = 0;
video_stream_id = 0;
audio_sample_duration = 0;
video_sample_duration = 0;
}
} // namespace wvm
} // namespace media
} // namespace shaka