shaka-packager/packager/media/base/aes_decryptor.cc

163 lines
5.8 KiB
C++

// Copyright 2016 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
#include "packager/media/base/aes_decryptor.h"
#include <openssl/aes.h>
#include <algorithm>
#include "packager/base/logging.h"
namespace {
// AES defines three key sizes: 128, 192 and 256 bits.
bool IsKeySizeValidForAes(size_t key_size) {
return key_size == 16 || key_size == 24 || key_size == 32;
}
} // namespace
namespace shaka {
namespace media {
AesCbcDecryptor::AesCbcDecryptor(CbcPaddingScheme padding_scheme)
: AesCbcDecryptor(padding_scheme, kDontUseConstantIv) {}
AesCbcDecryptor::AesCbcDecryptor(CbcPaddingScheme padding_scheme,
ConstantIvFlag constant_iv_flag)
: AesCryptor(constant_iv_flag), padding_scheme_(padding_scheme) {
if (padding_scheme_ != kNoPadding) {
CHECK_EQ(constant_iv_flag, kUseConstantIv)
<< "non-constant iv (cipher block chain across calls) only makes sense "
"if the padding_scheme is kNoPadding.";
}
}
AesCbcDecryptor::~AesCbcDecryptor() {}
bool AesCbcDecryptor::InitializeWithIv(const std::vector<uint8_t>& key,
const std::vector<uint8_t>& iv) {
if (!IsKeySizeValidForAes(key.size())) {
LOG(ERROR) << "Invalid AES key size: " << key.size();
return false;
}
CHECK_EQ(AES_set_decrypt_key(key.data(), key.size() * 8, mutable_aes_key()),
0);
return SetIv(iv);
}
bool AesCbcDecryptor::CryptInternal(const uint8_t* ciphertext,
size_t ciphertext_size,
uint8_t* plaintext,
size_t* plaintext_size) {
DCHECK(plaintext_size);
DCHECK(aes_key());
// Plaintext size is the same as ciphertext size except for pkcs5 padding.
// Will update later if using pkcs5 padding. For pkcs5 padding, we still
// need at least |ciphertext_size| bytes for intermediate operation.
if (*plaintext_size < ciphertext_size) {
LOG(ERROR) << "Expecting output size of at least " << ciphertext_size
<< " bytes.";
return false;
}
*plaintext_size = ciphertext_size;
if (ciphertext_size == 0) {
if (padding_scheme_ == kPkcs5Padding) {
LOG(ERROR) << "Expected ciphertext to be at least " << AES_BLOCK_SIZE
<< " bytes with Pkcs5 padding.";
return false;
}
return true;
}
DCHECK(plaintext);
const size_t residual_block_size = ciphertext_size % AES_BLOCK_SIZE;
const size_t cbc_size = ciphertext_size - residual_block_size;
if (residual_block_size == 0) {
AES_cbc_encrypt(ciphertext, plaintext, ciphertext_size, aes_key(),
internal_iv_.data(), AES_DECRYPT);
if (padding_scheme_ != kPkcs5Padding)
return true;
// Strip off PKCS5 padding bytes.
const uint8_t num_padding_bytes = plaintext[ciphertext_size - 1];
if (num_padding_bytes > AES_BLOCK_SIZE) {
LOG(ERROR) << "Padding length is too large : "
<< static_cast<int>(num_padding_bytes);
return false;
}
*plaintext_size -= num_padding_bytes;
return true;
} else if (padding_scheme_ == kNoPadding) {
AES_cbc_encrypt(ciphertext, plaintext, cbc_size, aes_key(),
internal_iv_.data(), AES_DECRYPT);
// The residual block is not encrypted.
memcpy(plaintext + cbc_size, ciphertext + cbc_size, residual_block_size);
return true;
} else if (padding_scheme_ != kCtsPadding) {
LOG(ERROR) << "Expecting cipher text size to be multiple of "
<< AES_BLOCK_SIZE << ", got " << ciphertext_size;
return false;
}
DCHECK_EQ(padding_scheme_, kCtsPadding);
if (ciphertext_size < AES_BLOCK_SIZE) {
// Don't have a full block, leave unencrypted.
memcpy(plaintext, ciphertext, ciphertext_size);
return true;
}
// AES-CBC decrypt everything up to the next-to-last full block.
if (cbc_size > AES_BLOCK_SIZE) {
AES_cbc_encrypt(ciphertext, plaintext, cbc_size - AES_BLOCK_SIZE, aes_key(),
internal_iv_.data(), AES_DECRYPT);
}
const uint8_t* next_to_last_ciphertext_block =
ciphertext + ciphertext_size - residual_block_size - AES_BLOCK_SIZE;
uint8_t* next_to_last_plaintext_block =
plaintext + ciphertext_size - residual_block_size - AES_BLOCK_SIZE;
// Determine what the last IV should be so that we can "skip ahead" in the
// CBC decryption.
std::vector<uint8_t> last_iv(
ciphertext + ciphertext_size - residual_block_size,
ciphertext + ciphertext_size);
last_iv.resize(AES_BLOCK_SIZE, 0);
// Decrypt the next-to-last block using the IV determined above. This decrypts
// the residual block bits.
AES_cbc_encrypt(next_to_last_ciphertext_block, next_to_last_plaintext_block,
AES_BLOCK_SIZE, aes_key(), last_iv.data(), AES_DECRYPT);
// Swap back the residual block bits and the next-to-last block.
if (plaintext == ciphertext) {
std::swap_ranges(next_to_last_plaintext_block,
next_to_last_plaintext_block + residual_block_size,
next_to_last_plaintext_block + AES_BLOCK_SIZE);
} else {
memcpy(next_to_last_plaintext_block + AES_BLOCK_SIZE,
next_to_last_plaintext_block, residual_block_size);
memcpy(next_to_last_plaintext_block,
next_to_last_ciphertext_block + AES_BLOCK_SIZE, residual_block_size);
}
// Decrypt the next-to-last full block.
AES_cbc_encrypt(next_to_last_plaintext_block, next_to_last_plaintext_block,
AES_BLOCK_SIZE, aes_key(), internal_iv_.data(), AES_DECRYPT);
return true;
}
void AesCbcDecryptor::SetIvInternal() {
internal_iv_ = iv();
internal_iv_.resize(AES_BLOCK_SIZE, 0);
}
} // namespace media
} // namespace shaka