shaka-packager/media/formats/mp4/encrypting_fragmenter.cc

165 lines
5.3 KiB
C++

// Copyright 2014 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
#include "media/formats/mp4/encrypting_fragmenter.h"
#include "media/base/aes_encryptor.h"
#include "media/base/buffer_reader.h"
#include "media/base/encryption_key_source.h"
#include "media/base/media_sample.h"
#include "media/formats/mp4/box_definitions.h"
#include "media/formats/mp4/cenc.h"
namespace {
// Generate 64bit IV by default.
const size_t kDefaultIvSize = 8u;
} // namespace
namespace media {
namespace mp4 {
EncryptingFragmenter::EncryptingFragmenter(
TrackFragment* traf,
bool normalize_presentation_timestamp,
scoped_ptr<EncryptionKey> encryption_key,
int64 clear_time,
uint8 nalu_length_size)
: Fragmenter(traf, normalize_presentation_timestamp),
encryption_key_(encryption_key.Pass()),
nalu_length_size_(nalu_length_size),
clear_time_(clear_time) {
DCHECK(encryption_key_);
}
EncryptingFragmenter::~EncryptingFragmenter() {}
Status EncryptingFragmenter::AddSample(scoped_refptr<MediaSample> sample) {
DCHECK(sample);
if (encryptor_) {
Status status = EncryptSample(sample);
if (!status.ok())
return status;
}
return Fragmenter::AddSample(sample);
}
Status EncryptingFragmenter::InitializeFragment() {
Status status = Fragmenter::InitializeFragment();
if (!status.ok())
return status;
// Enable encryption for this fragment if |clear_time_| becomes non-positive.
if (clear_time_ <= 0)
return PrepareFragmentForEncryption();
// Otherwise, this fragment should be in clear text.
// At most two sample description entries, an encrypted entry and a clear
// entry, are generated. The 1-based clear entry index is always 2.
const uint32 kClearSampleDescriptionIndex = 2;
traf()->header.flags |=
TrackFragmentHeader::kSampleDescriptionIndexPresentMask;
traf()->header.sample_description_index = kClearSampleDescriptionIndex;
return Status::OK;
}
void EncryptingFragmenter::FinalizeFragment() {
if (encryptor_) {
DCHECK_LE(clear_time_, 0);
FinalizeFragmentForEncryption();
} else {
DCHECK_GT(clear_time_, 0);
clear_time_ -= fragment_duration();
}
Fragmenter::FinalizeFragment();
}
Status EncryptingFragmenter::PrepareFragmentForEncryption() {
traf()->auxiliary_size.sample_info_sizes.clear();
traf()->auxiliary_offset.offsets.clear();
return encryptor_ ? Status::OK : CreateEncryptor();
}
void EncryptingFragmenter::FinalizeFragmentForEncryption() {
// The offset will be adjusted in Segmenter after knowing moof size.
traf()->auxiliary_offset.offsets.push_back(0);
// Optimize saiz box.
SampleAuxiliaryInformationSize& saiz = traf()->auxiliary_size;
saiz.sample_count = traf()->runs[0].sample_sizes.size();
if (!saiz.sample_info_sizes.empty()) {
if (!OptimizeSampleEntries(&saiz.sample_info_sizes,
&saiz.default_sample_info_size)) {
saiz.default_sample_info_size = 0;
}
} else {
// |sample_info_sizes| table is filled in only for subsample encryption,
// otherwise |sample_info_size| is just the IV size.
DCHECK(!IsSubsampleEncryptionRequired());
saiz.default_sample_info_size = encryptor_->iv().size();
}
}
Status EncryptingFragmenter::CreateEncryptor() {
DCHECK(encryption_key_);
scoped_ptr<AesCtrEncryptor> encryptor(new AesCtrEncryptor());
const bool initialized = encryption_key_->iv.empty()
? encryptor->InitializeWithRandomIv(
encryption_key_->key, kDefaultIvSize)
: encryptor->InitializeWithIv(
encryption_key_->key, encryption_key_->iv);
if (!initialized)
return Status(error::MUXER_FAILURE, "Failed to create the encryptor.");
encryptor_ = encryptor.Pass();
return Status::OK;
}
void EncryptingFragmenter::EncryptBytes(uint8* data, uint32 size) {
DCHECK(encryptor_);
CHECK(encryptor_->Encrypt(data, size, data));
}
Status EncryptingFragmenter::EncryptSample(scoped_refptr<MediaSample> sample) {
DCHECK(encryptor_);
FrameCENCInfo cenc_info(encryptor_->iv());
uint8* data = sample->writable_data();
if (!IsSubsampleEncryptionRequired()) {
EncryptBytes(data, sample->data_size());
} else {
BufferReader reader(data, sample->data_size());
while (reader.HasBytes(1)) {
uint64 nalu_length;
if (!reader.ReadNBytesInto8(&nalu_length, nalu_length_size_))
return Status(error::MUXER_FAILURE, "Fail to read nalu_length.");
SubsampleEntry subsample;
subsample.clear_bytes = nalu_length_size_ + 1;
subsample.cypher_bytes = nalu_length - 1;
if (!reader.SkipBytes(nalu_length)) {
return Status(error::MUXER_FAILURE,
"Sample size does not match nalu_length.");
}
EncryptBytes(data + subsample.clear_bytes, subsample.cypher_bytes);
cenc_info.AddSubsample(subsample);
data += nalu_length_size_ + nalu_length;
}
// The length of per-sample auxiliary datum, defined in CENC ch. 7.
traf()->auxiliary_size.sample_info_sizes.push_back(cenc_info.ComputeSize());
}
cenc_info.Write(aux_data());
encryptor_->UpdateIv();
return Status::OK;
}
} // namespace mp4
} // namespace media