shaka-packager/packager/media/base/key_source.cc

194 lines
6.1 KiB
C++

// Copyright 2014 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
#include "packager/media/base/key_source.h"
#include "packager/base/strings/string_number_conversions.h"
#include "packager/media/base/aes_encryptor.h"
#include "packager/media/base/buffer_writer.h"
namespace {
// TODO(kqyang): Consider making it configurable.
const char kDefaultUUID[] = "edef8ba9-79d6-4ace-a3c8-27dcd51d21ed";
const char kDefaultSystemName[] = "";
} // namespace
namespace edash_packager {
namespace media {
EncryptionKey::EncryptionKey() {}
EncryptionKey::~EncryptionKey() {}
KeySource::~KeySource() {}
Status KeySource::FetchKeys(const std::vector<uint8_t>& content_id,
const std::string& policy) {
// Do nothing for fixed key encryption/decryption.
return Status::OK;
}
Status KeySource::FetchKeys(const std::vector<uint8_t>& pssh_box) {
// Do nothing for fixed key encryption/decryption.
return Status::OK;
}
Status KeySource::FetchKeys(const std::vector<std::vector<uint8_t>>& key_ids) {
// Do nothing for fixed key encryption/decryption.
return Status::OK;
}
Status KeySource::FetchKeys(uint32_t asset_id) {
// Do nothing for fixed key encryption/decryption.
return Status::OK;
}
Status KeySource::GetKey(TrackType track_type, EncryptionKey* key) {
DCHECK(key);
DCHECK(encryption_key_);
*key = *encryption_key_;
return Status::OK;
}
Status KeySource::GetKey(const std::vector<uint8_t>& key_id,
EncryptionKey* key) {
DCHECK(key);
DCHECK(encryption_key_);
if (key_id != encryption_key_->key_id) {
return Status(error::NOT_FOUND, std::string("Key for key ID ") +
base::HexEncode(&key_id[0], key_id.size()) +
" was not found.");
}
*key = *encryption_key_;
return Status::OK;
}
Status KeySource::GetCryptoPeriodKey(uint32_t crypto_period_index,
TrackType track_type,
EncryptionKey* key) {
*key = *encryption_key_;
// A naive key rotation algorithm is implemented here by left rotating the
// key, key_id and pssh. Note that this implementation is only intended for
// testing purpose. The actual key rotation algorithm can be much more
// complicated.
LOG(WARNING)
<< "This naive key rotation algorithm should not be used in production.";
std::rotate(key->key_id.begin(),
key->key_id.begin() + (crypto_period_index % key->key_id.size()),
key->key_id.end());
std::rotate(key->key.begin(),
key->key.begin() + (crypto_period_index % key->key.size()),
key->key.end());
const size_t kPsshHeaderSize = 32u;
std::vector<uint8_t> pssh_data(key->pssh.begin() + kPsshHeaderSize,
key->pssh.end());
std::rotate(pssh_data.begin(),
pssh_data.begin() + (crypto_period_index % pssh_data.size()),
pssh_data.end());
key->pssh = PsshBoxFromPsshData(pssh_data);
return Status::OK;
}
std::string KeySource::UUID() {
return kDefaultUUID;
}
std::string KeySource::SystemName() {
return kDefaultSystemName;
}
scoped_ptr<KeySource> KeySource::CreateFromHexStrings(
const std::string& key_id_hex,
const std::string& key_hex,
const std::string& pssh_data_hex,
const std::string& iv_hex) {
scoped_ptr<EncryptionKey> encryption_key(new EncryptionKey());
if (!base::HexStringToBytes(key_id_hex, &encryption_key->key_id)) {
LOG(ERROR) << "Cannot parse key_id_hex " << key_id_hex;
return scoped_ptr<KeySource>();
}
if (!base::HexStringToBytes(key_hex, &encryption_key->key)) {
LOG(ERROR) << "Cannot parse key_hex " << key_hex;
return scoped_ptr<KeySource>();
}
std::vector<uint8_t> pssh_data;
if (!pssh_data_hex.empty() &&
!base::HexStringToBytes(pssh_data_hex, &pssh_data)) {
LOG(ERROR) << "Cannot parse pssh_hex " << pssh_data_hex;
return scoped_ptr<KeySource>();
}
if (!iv_hex.empty()) {
if (!base::HexStringToBytes(iv_hex, &encryption_key->iv)) {
LOG(ERROR) << "Cannot parse iv_hex " << iv_hex;
return scoped_ptr<KeySource>();
}
}
encryption_key->pssh = PsshBoxFromPsshData(pssh_data);
return scoped_ptr<KeySource>(
new KeySource(encryption_key.Pass()));
}
KeySource::TrackType KeySource::GetTrackTypeFromString(
const std::string& track_type_string) {
if (track_type_string == "SD")
return TRACK_TYPE_SD;
if (track_type_string == "HD")
return TRACK_TYPE_HD;
if (track_type_string == "AUDIO")
return TRACK_TYPE_AUDIO;
if (track_type_string == "UNSPECIFIED")
return TRACK_TYPE_UNSPECIFIED;
LOG(WARNING) << "Unexpected track type: " << track_type_string;
return TRACK_TYPE_UNKNOWN;
}
std::string KeySource::TrackTypeToString(TrackType track_type) {
switch (track_type) {
case TRACK_TYPE_SD:
return "SD";
case TRACK_TYPE_HD:
return "HD";
case TRACK_TYPE_AUDIO:
return "AUDIO";
default:
NOTIMPLEMENTED() << "Unknown track type: " << track_type;
return "UNKNOWN";
}
}
std::vector<uint8_t> KeySource::PsshBoxFromPsshData(
const std::vector<uint8_t>& pssh_data) {
const uint8_t kPsshFourCC[] = {'p', 's', 's', 'h'};
const uint32_t kVersionAndFlags = 0;
const uint32_t pssh_data_size = pssh_data.size();
const uint32_t total_size =
sizeof(total_size) + sizeof(kPsshFourCC) + sizeof(kVersionAndFlags) +
sizeof(kWidevineSystemId) + sizeof(pssh_data_size) + pssh_data_size;
BufferWriter writer;
writer.AppendInt(total_size);
writer.AppendArray(kPsshFourCC, sizeof(kPsshFourCC));
writer.AppendInt(kVersionAndFlags);
writer.AppendArray(kWidevineSystemId, sizeof(kWidevineSystemId));
writer.AppendInt(pssh_data_size);
writer.AppendVector(pssh_data);
return std::vector<uint8_t>(writer.Buffer(), writer.Buffer() + writer.Size());
}
KeySource::KeySource() {}
KeySource::KeySource(scoped_ptr<EncryptionKey> encryption_key)
: encryption_key_(encryption_key.Pass()) {
DCHECK(encryption_key_);
}
} // namespace media
} // namespace edash_packager